

Criterion 1 – Curricular Aspects

Key Indicator	1.1	Curriculu	Curriculum Design and Development								
Metric	1.1.3	Average	Average percentage of courses having focus on employability/								
		entrepren	entrepreneurship/ Skill development offered by Physics.								

DEPARTMENT OF PHYSICS

SYLLABUS COPY OF THE COURSES HIGHLIGHTING THE FOCUS ON EMPLOYABILITY/ ENTREPRENEURSHIP/ SKILL DEVELOPMENT

1. List of courses for the programmes in order of

S. No.		Programme Name	
i.	B.Sc. (Physics)		
ii.	M.Sc (Physics)		

2. Syllabus of the courses as per the list.

Legend :	Words highlighted with Blue Color	-	Entrepreneurship
	Words highlighted with Red Color	-	Employability
	Words highlighted with Purple	-	Skill Development
	Color		

1. List of Courses

Name of the Course	Course	Year of	Activities/Content with
	Code	Introductio	direct bearing on
		n	Employability/
			entrepreneursnip / Skill
	B Sc (Phys	ics)	uevelopment
			Soft skill - Group
Communication Skills in English	XGL101	2018-19	discussion. Oral
		2010 19	presentation, seminar
Arivival Tamil (Comprehensive	XGL102A		Soft skill -Group
English	/	2018-19	discussion, Oral
	XGL102B		presentation, seminar
			Employability skill –
Algebra, Trigonometry and	XMG103	2018-19	Implementing skill-
Transform			applying problem
			solving, reasoning skill
Properties of Matter and Sound	XPH104	2018-19	Employability skill
-			
Mechanics and Special Theory of	XPH105	2018-19	Employability skill
Relativity	2111105	2010-17	Employaomity skin
Human Ethics Values Rights and			Soft skill -Group
Gender Fauality	XUM106	2018-19	discussion, Oral
			presentation, seminar
Physics Practical I	XPH107	2018-19	Employability skill
Thysics Theorem T	711 11107	2010 17	Employuonity skin
English for Effective			Soft skill -Group
Communication	XGL201	2018-19	discussion, Oral
			presentation, seminar
	VEGOOO	2010 10	Soft skill -Group
Environmental Studies	XES202	2018-19	discussion, Oral
			presentation, seminar
Calculus and Differential Equations	XMG203	2018-19	Skill Development
Electricity and Magnetism	XPH204	2018-19	Employability skill
Atomic Physics	XPH205	2018-19	Employability skill
Dhysics Dractical II	YDU206	2018 10	Employability skill
	AF11200	2010-19	
Physics Workshop Skills	ХЪНЗ01	2018-10	Skill Development
I HYSICS WOLKSHOP SKIIIS	AI 11301	2010-17	Skin Development

Inorganic, Organic and Physical Chemistry I	XCG302	2018-19	Employability skill
Heat and Thermodynamics	XPH303	2018-19	Employability skill
Basic Electronics	XPH304	2018-19	Employability skill
*Open Elective		2018-19	*****
Volumetric and Qualitative Analysis	XCG305	2018-19	Employability skill
Disaster Management	XUM306	2018-19	Soft skill -Group discussion, Oral presentation, seminar
Physics Practical III	XPH307	2018-19	Employability skill
Office Automation (15 hours)		2018-19	*****
Electrical Circuit Network Skills	XPH401	2018-19	Skill Development
Inorganic, Organic and Physical Chemistry II	XCG402	2018-19	Employability skill
Waves and Optics	XPH403	2018-19	Employability skill
Analog & Digital electronics	XPH404	2018-19	Employability skill
*Open Elective		2018-19	*****
Volumetric and Qualitative Analysis	XCG405	2018-19	Skill Development
Physics Practical IV	XPH406	2018-19	Skill Development
Animation Software I (15 hours)		2018-19	*****
Basic Instrumentation Skills	XPH501	2018-19	Skill Development
Solid State Physics	XPH502A	2018-19	Employability skill
Atomic & Molecular Spectroscopy	XPH502B	2018-19	Employability skill
Nuclear and Particle Physics	XPH503A	2018-19	Employability skill
Principles of Modern Physics	XPH503B	2018-19	Employability skill
Microprocessor and C programming	XPH504A	2018-19	Skill Development, Employability skill
Micro Processor and Microcontroller	XPH504B	2018-19	Skill Development, Employability skill
*Open Elective		2018-19	*****

Physics Practical V A	YDH505	2018 10	Skill Development,		
	АГПЈОЈ	2010-19	Employability skill		
Physics Practical V B	XPH506	2018-19	Skill Development,		
		2010 17	Employability skill		
Animation Software II (15 hours)		2017-18	*****		
		2017 10			
IPT (21 days)	_	2017-18	****		
			Coft al-ill Carrow		
Renewable Energy	XPH601	2018-19	Soft skill -Group discussion Oral		
Kenewable Energy	7111001	2010 17	presentation, seminar		
Relativity & Quantum Mechanics	XPH602A	2018-19	Employability skill		
Material Science	XPH602B	2018-19	Employability skill		
Micro Electro Mechanical System	XPH603A	2018-19	Employability skill		
	VDUCOOD	0010 10			
Numerical methods in Physics	XPH603B	2018-19	Skill Development		
	NDI CO A	2010.10			
Physics Practical VI A	XPH604	2018-19	Skill Development		
Physics Practical VI B	XPH605	2018-19	Skill Development		
Project	XPH606	2018-19	Skill Development		
	M.Sc. Phys	ics			
Mathematical Physics I	YPH101	2010-11	Employability skill		
Classical Dynamics and Relativity	YPH102	2010-11	Employability skill		
Basic Electronics	YPH103	2010-11	Employability skill		
Basic Practical (General &					
Electronics) Lab	YPH104	2010-11	Skill Development		
Numerical Methods in Physics	YPH105A	2010-11	Employability skill		
Geophysics	YPH105B	2010-11	Employability skill		
Mathematical Physics II	YPH201	2010-11	Employability skill		
Statistical Mechanics	YPH202	2010-11	Employability skill		
Electromagnetic Theory	YPH203	2010-11	Employability skill		
Advanced General Experiments Lab	YPH204	2010-11	Skill Development		
Laser and its applications	YPH205A	2010-11	Employability skill		
Nano Science	YPH205B	2010-11	Employability skill		
Solid State Physics	YPH301	2010-11	Employability skill		
Ouantum Mechanics	YPH302	2010-11	Employability skill		
Nuclear and Particle Physics	YPH303	2010-11	Employability skill		
Advanced Electronics I - Lab	YPH304	2010-11	Skill Development		
Crystal growth and Characterization					
Techniques	YPH305A	2010-11	Employability skill		

Communication Electronics	YPH305B	2010-11	Employability skill
Spectroscopy	YPH401	2010-11	Employability skill
Special Electronics	YPH402	2010-11	Employability skill
Advanced Electronics II - Lab	YPH403	2010-11	Skill Development
Programming in C++	YPH404A	2010-11	Soft Skill
Non-Destructive Testing Technology	YPH404B	2010-11	Soft Skill
Project work and viva voce	YPH405	2010-11	Skill Development
Elective I - Thin film Science and Characterization Techniques	YPH105C	2015-16	Employability skill
Elective II - Non-Destructive Testing Technology	YPH205C	2015-16	Employability skill
Elective III – Automation Science & Techniques	YPH305B	2015-16	Employability skill
Research Methodology	YPH305C	2015-16	Employability skill

2. Syllabus of Courses B.Sc. Physics Programmes

XPH104 - PROPERTIES OF MATTER AND SOUND

COURSE OUTCOMES

- CO1. Cog: R, U, App; *Identify* the principles of elasticity, *derive* expression for twisting couple and *determine* rigidity modulus of a wire.
- CO2. Cog: U, App; Develop Knowledge on bending of beams, its properties and application.
- CO3. Cog: R, U; *Define* surface tension, *recall* the concepts of low pressure and *explain* the methods of production of low pressure.
- CO4. Cog: U, Ana; Understand flow of liquid, viscosity and identify its applications.

CO5.Cog: R, Ana; *Describe* the production, propagation, perception &*analysis* of acoustical wave.

	COURSE NA	ME	L	Τ	Р	С			
COURSE CODE									
XPH104	PROPERTIES OF MATT	ER AND SOUNI) 3	1	0	4			
			L	Т	Р	Н			
			3	1	0	4			
UNIT I ELASTICITY 7+3									
Stress – Strain Diagra	am – Elastic Module, Work do	one per unit volu	ume in sł	nearin	g str	ain –			
relation between elasti	ic constants - Poisson's Ratio-	Expression for P	oisson's r	atio i	n teri	ms of			
elastic constants - Tw	isting couple on a wire – Work	done in twisting	g – Torsio	nal pe	endul	um –			
Determination of rigidi	ity modulus of a wire.								
UNIT II BENDING	OF BEAMS					8+3			
Expression for bendin	ng moment – Cantilever – Ex	pression for de	pression -	– Exp	erim	ent to			
find Young's Modulu	s - Cantilever oscillation - Ex	pression for peri	od – Unit	form	bend	ing –			
Expression for elevat	ion - Experiment to find You	ung's modulus u	ising mic	roscoj	pe –	Non			
Uniform bending – Ex	pression for depression - Experi	ment to determin	e Young's	s mod	ulus	using			
mirror and telescope.									
UNIT III SURFACE	TENSION					10+3			
Definition and dimen	sions of surface tension - Ex	cess of pressure	over cu	rved	surfa	ces -			
Application to spheric	al and cylindrical drops and bu	bbles - Variation	n of <mark>Sur</mark> fa	ce tei	nsion	with			
temperature - Jaegar's	method. Physics of Low Press	ure. Production	and Meas	ureme	ent o	f low			
pressure - Grades' mole	ecular pump - Rotary pump - Kn	udsen absolute ga	uge.						
UNIT IV VISCOSIT	Y					10+3			
Co-efficient of viscos	sity and its dimensions - Rate	of flow of liqu	id in a c	capilla	ary t	ube -			
Poiseuilles' formula - I	Experiment to determine co-efficient	cient of viscosity	of a liqui	d - V	ariati	on of			
viscosity of a liquid wi	th temperature - Applications of	viscosity.							
UNIT V SOUND						10+3			
Laws of transverse v	vibrations in strings – verifica	tion by Sonome	eter - Mu	isic a	ind r	noise-			
Characteristics of mus	sical sound - Reverberation and	Reverberation ti	<mark>me</mark> – Sab	ine's	form	ula –			
Optimum reverberation – Measurement of reverberation time – Absorption coefficient –									
Acoustics design – Ult	rasonic Production: Piezo electri	c oscillator and n	nagnetosti	riction	ı osci	llator			
method - Properties -	Applications.	<u> </u>							
		LECTURE	TUTOR	IAL	TO	TAL			
		45	15			60			
	6								

TEXT BOOKS

- 1. Brijlal and Subramanian, 'Properties of Matter', S. Chand and company Ltd, New Delhi, 2003.
- 2. N. Subrahmaniyam and Brijlal, 'A Text Book of Sound', Vikash Publishing House, Second Revised Edition, 1995.
- 3. R. Murugeshen, 'Properties of Matter and Acoustics', S. Chand and company Ltd, New Delhi, 2004.

REFERENCES

- 1. D.S. Mathur, 'Elements of Properties of Matter', S. Chand and company Ltd, New Delhi, 2000.
- 2. Subramanian Iyer and Jeyaraman, 'Properties of matter'
- 3. L.P. Sharma, H.C. Saxena, 'Oscillations, Waves and Sound'
- 4. R. L. Saigal, 'A Text Book of Sound'

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	3	2	0	0	3	0	1
CO ₂	3	1	0	2	3	3	0	1
CO ₃	3	3	3	0	0	3	3	2
CO ₄	3	3	0	0	3	3	0	2
CO5	1	3	3	1	2	3	0	2
	13	13	8	3	8	15	2	8
Scaled to 1, 2, 3	3	3	2	4	2	3	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH105 - MECHANICS AND SPECIAL THEORY OF RELATIVITY

COURSE OUTCOMES

- CO1. Cog: R, U, App; *Recall, associate and solve* the fundamentals of vector, differential equations and laws of motion.
- CO2. Cog: R, U;Acquire *knowledge* and *describe* momentum, work, energy, rotationalmotion, oscillatory motion and its *relation*
- CO3. Cog: R, U;Aff: Rec.;*Explain* various laws of gravitation and *how* it is used in the latest science of satellite launching.
- CO4. Cog: R, U, App;*Describe*the concepts of statics, hydrostatics and hydrodynamics, *recall* the laws of floatation ad *construct* models for pressure variations.
- CO5.Cog: R, U; *Understand* the theory of relativity, Lorentz transformations and *derive* massenergy equivalence

COURSE	SUBJECT NAME]	L	Т	Р	C	
XPH105			3	1	0	4	
	MECHANICS AND SPECIAL THEO	$\mathbf{RY OF} $	L L	T	P	H	
	RELATIVITY		3	1	0	4	
UNIT I PRO	JECTILE, IMPULSE & IMPACT				-	5+2	
Projectile- Pat	h of a projectile is a parabola – Range on	a inclined pla	ane -	- Impul	se – I	mpact –	
Impulsive force	e – Laws of impact – Impact of a smooth s	phere on a ho	orizo	ntal pla	ne – E	Direct &	
oblique impac	t – Loss of kinetic energy – Motion of two i	nteracting boo	dies				
UNIT II DY	NAMICS OF RIGID BODIES		~			12+4	
Kinetic energy	of rotation – Angular momentum of a ro	tating body -	- Co	mpoun	d pend	lulum –	
equivalent sin	ple pendulum – reversibility of centres of	oscillation ai	nd si	uspensi	on - c	entre of	
I aw of conser	rvation of momentum – Center of mass – V	Velocity and		n or a i eleratio	n of c	entre of	
mass – System	n of variable mass- Equation of a Rocket	t motion $-c$	onse	rvation	of lin	ear and	
angular mome	ntum.		01150	i vanon	01 111	our und	
UNIT III O	RAVITATION, CENTER OF GRAV	VITY AND	CF	ENTRE	OF	0.2	
PRESSURE						8+3	
Newton's law	of gravitation - Boy's method of determine	ination of G	- K	epler's	laws -	orbital	
velocity and e	scape velocity - Geo-stationary and Commu	nication-Sate	ellite	s Centr	e of gr	avity of	
solid and hol	low tetrahedron, solid and hollow hemis	sphere. Centr	re o	f press	ure -	vertical	
rectangular lar	nina - vertical triangular lamina.					10.2	
UNIT IV HY	DRODYNAMICS	tuba for liqui	da	Fuler		10+3 tion for	
Equation of c	flow - Torricelli's theorem - Bernoulli's	tube for fiquity	ius -	- Eulers	one I	aws of	
floatation - me	eta centre - meta centric height of a ship. A	tmospheric n	ressi	re its y	variatic	ons with	
altitude - reaso	ons for such variations.	pilone p	10000		unun		
UNIT V THI	EORY OF RELATIVITY					10+3	
Galilean-New	onian relativity, Galilean frames formation	ns- Michelsor	n Mo	orley E	xperim	ent and	
its importance	- Einstein's postuletes - Lorentz transform	nation – <mark>Rela</mark>	tivit	y of spa	ace and	l time –	
Addition of ve	elocities – Variation of Mass with velocity	– Mass- Ener	rgy (equival	ence- I	Physical	
significance.							
	-	LECIURE 15	IU	10KI 15	AL I	<u>OTAL</u>	
TEXT BOOK		43		15		00	
1 M Na	ravanamoorthy and N Nagarethnam 'Dyn	amics' Natio	nal	publish	ing Co	mnany	
Chennai. 8	th Edition. 2002.	unites, 11410	inai	puonon		inpuny,	
2. R. Mu	grugesan, KiruthigaSivaprakash, 'Modern	Physics', S.	Cha	nd & (Co. Lt	d. New	
Delhi, Firs	t Edition, 1992.	•					
3. M.Narayanamoorthy and N.Nagarethinam, 'Hydrostatics', National Publishing company,							
Chennai.							
REFERENCI	ES						
1. P. R. S	ubramaniam, T. Jayaraman and C. Rangaraj	an S.V., 'Meo	chan	ics for l	3.Sc.,		
Classes, P	udiisiners Unennai.	and and come	NOPT	I tol M		hi	
2. D.S. Maille 2000	n, Elements of Froperties of Matter, S. Ch	and and com	Jany	Liu, 110		,	
2 Custa V	ar 'Flementary Statistical Mechanics'						

Cos	PO 1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO1	3	3	1	2	3	2	0	1
CO ₂	3	2	1	2	3	3	0	1
CO ₃	3	3	2	2	3	3	3	2
CO ₄	3	3	0	2	3	2	0	2
CO ₅	3	2	2	2	3	3	0	2
	15	13	6	10	15	13	2	8
Scaled to 1, 2, 3	3	3	2	2	3	3	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH107		0	0	3	2
	PHYSICS PRACTICAL –I	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.

CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.

CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 1. Young's modulus Non uniform bending Scale and telescope
- 2. Young's modulus Non uniform bending –Pin and microscope.
- 3. Koenigs Uniform Bending Method Young's Modulus.
- 4. Screw Gauge and Vernier Caliper (Measurements)
- 5. Surface tension and interfacial surface tension by drop weight method.
- 6. Coefficient of viscosity burette method.
- 7. Compound Pendulum Determination of g and K.
- 8. Surface tension by capillary rise method.
- 9. Torsional pendulum- determination of the rigidity modulus of thin wire.
- 10. Stokes method determine the viscosity of the given liquid.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.

5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

Trupping with Frogramme Outcomes										
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈		
CO ₁	3	1		2	1	2	3	3		
CO ₂	3	1		2	1	2	3	2		
CO ₃	3	1		1	1	2	2	1		
CO ₄	3	1		2	1	2	3	2		
	12	4		7	4	6	11	8		
Scaled to 1, 2, 3	3	1		2	1	2	3	2		

Mapping with Programme Outcomes

3	- Strong:	2 –	Medium:	1 –	Low
---	-----------	-----	---------	-----	-----

XPH204 ELECTRICITY AND MAGNETISM

COURSE OUTCOMES

CO1. Cog: R, U, App; *Recall, understand and use* the basic theorems of scalars and vectors

- CO2. Cog: R, U, App;*Identify* and *explain* Gauss theorem and its applications and *apply* knowledge of the concepts of electrostatics
- CO3. Cog: R, U, Ana.;*Recall*Biot-Savart's law, *explain* current passing through straight conductor, coil, solenoid and *distinguish* various properties of magnetic materials.
- CO4. Cog: R, U;*Define*Faraday's law and Lenz's law and *demonstrate* mutual and self inductance of the coil.

CO5.Cog: R, App, E;*Select*the principle of magneto-statics, *develop* Maxwell's equation and *explain* EM wave propagation.

COURSE CODE	SUBJECT NAME	L	Т	Р	С			
XPH204		3	1	0	4			
	ELECTRICITY AND MAGNETISM	L	Т	Р	Η			
		3	1	0	4			
UNIT IELECTROSTATICS								

Electrostatic field - electric flux - Gauss's theorem of electrostatics - Application of Gauss theorem - electric field due to a point charge - infinite line of charge, uniformly charged spherical shell and solid sphere - plane charged sheet - charged conductor - Electric potential as line integral of electric field - potential due to a point charge - electric dipole - uniformly charged spherical shell and solid sphere. Capacitance of an isolated spherical conductor - Parallel plate, spherical and cylindrical condenser - Energy per unit volume in electrostatic field - dielectric

medium - Paralle	l plate capac	citor comp	pletely filled	l with d	ielectric.			
UNIT II CURRI	ENT ELEC	TRICITY	Y					8+3
Kirchoff's Laws	of Electric	city(Stater	nent), Whe	atstone	's bridge	e – Carr	ey Foster's	Bridge –
Heating effect: Jo	oule's law, S	Seebeck e	ffect, Peltie	r effect	, Thomso	on effect	- Thermody	ynamics of
thermocouple -	Thermo ele	ctric diag	grams – De	termina	ation of 7	Thomson	, Peltier co	efficient -
Measurement of	thermo emf	using pote	emtiometer.					
UNIT IIIMAGN	ETISM							10+3
Magneto statistic	s: Biot-Sav	art's law	& its appli	cations	- straigh	nt condu	ctor, circula	r coil and
solenoid carrying	g current -	Ampere's	circuital lay	w - Ma	gnetic pr	operties	of materials	: magnetic
intensity, magnet	tic induction	n, permea	bility, magi	netic su	usceptibil	ity - brie	ef introduct	ion of dia,
para and ferro ma	agnetic mate	rials.						
UNIT IV ELEC	TROMAG	NETIC IN	NDUCTION	N				5+2
Faraday's laws o	f electroma	gnetic ind	luction - Le	enz's la	w - self a	and mutu	al inductan	ice, L of a
single coil, M of	two coils - H	Energy sto	red in magr	netic fie	eld.			
UNIT V MA	XWELL'S	EQUAT	FION ANI) ELF	CTRON	IAGNET	FIC WAV	E 10+3
PR	OPAGATI	ION						
Equation of conti	nuity of cur	rent - disp	placement v	ector -	Maxwell	's equation	ons - Poynti	ng vector -
energy density in	electromag	netic field	d - electrom	agnetic	wave pr	opagatio	n through v	acuum and
isotropic dielectri	ic medium -	transverse	e nature of I	EM way	ves - pola	rization.		
					LECTU	RE TU	TORIAL	TOTAL
					LLCIU			IOIIII
				·	45	15		<u>60</u>
TEXT BOOKS					45	15		<u>60</u>
TEXT BOOKS 1. R. Murugesha	an, 'Electrici	ty and Ma	agnetism', S	. Chanc	45	15 Dany Ltd.	New Delhi	60 , 2008.
TEXT BOOKS 1. R. Murugesha 2. Brijlal and N	an, 'Electrici I. Subrahma	ty and Ma nyam,'Ele	agnetism', S ectricity and	. Chanc l Magn	45 d & Comp netism', R	15 Dany Ltd. atan Pra	New Delhi kashanMan	60 , 2008. dir, Agra,
TEXT BOOKS1.R. Murugesha2.Brijlal and N2000.	an, 'Electrici I. Subrahma	ty and Ma nyam,'Ele	agnetism', S ectricity and	. Chanc I Magn	45 d & Comp netism', R	atan Pra	New Delhi kashanMan	60 , 2008. dir, Agra,
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, '	an, 'Electrici I. Subrahma A Text Boo	ty and Ma nyam,'Ele ok of Elec	agnetism', S ectricity and ctricity and	. Chanc l Magne Magne	45 1 & Comp netism', R etism', S.	15Dany Ltd.atan PraChand &	New Delhi kashanMan & Company	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.	an, 'Electrici I. Subrahma A Text Boo	ty and Ma nyam,'Ele ok of Eleo	agnetism', S ectricity and ctricity and	. Chanc I Magn Magne	45 d & Comp netism', R etism', S.	15 Dany Ltd. atan Pra Chand &	New Delhi kashanMan & Company	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.4.Edward M. P	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect	ty and Ma inyam,'Ele ok of Elec tricity and	agnetism', S ectricity and ctricity and Magnetism	. Chanc l Magn Magne l', McG	45 d & Comp netism', R etism', S. raw Hill	2000 2000 2000 2000 2000 2000 2000 200	New Delhi kashanMan & Company n.	60 , 2008. dir, Agra, Ltd. New
 R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pe D C Tayal, 'E 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an	ty and Ma inyam,'Ele ok of Elec tricity and d Magnet	agnetism', S ectricity and ctricity and Magnetism ism', Himala	. Chanc l Magn Magne ', McG aya Puł	45 1 & Comp netism', R etism', S. raw Hill 1 plishing F	15 Dany Ltd. atan Pra Chand & Educatio Iouse.	New Delhi kashanMan & Company n.	60 , 2008. dir, Agra, Ltd. New
 TEXT BOOKS R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pr D C Tayal, 'E REFERENCES 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an	ty and Ma nyam,'Ele ok of Elec tricity and d Magneti	agnetism', S ectricity and ctricity and Magnetism ism', Himal	. Chanc I Magn Magne I', McG aya Pul	45 d & Completism', R etism', S. eraw Hill 1 plishing H	15Dany Ltd.atan PraChand &EducatioIouse.	New Delhi kashanMan & Company n.	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.4.Edward M. Pa 5.5.D C Tayal, 'E REFERENCES1.D.L. Sehgal,	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop	ty and Ma inyam,'Ele ok of Elec tricity and d Magneti ra and N.1	agnetism', S ectricity and ctricity and Magnetism ism', Himala K. Sehgal, T	. Chanc l Magne Magne a', McG aya Pul	45 1 & Completism', R etism', S. fraw Hill 1 plishing F eity and N	15 pany Ltd. atan Pra Chand & Educatio Iouse.	New Delhi kashanMan & Company n. m', 5 th Edit	60 , 2008. dir, Agra, Ltd. New
 R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pr D C Tayal, 'E REFERENCES D.L. Sehgal, chand& Sons 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chopi , New Delhi	ty and Ma inyam, 'Ele ok of Elec tricity and d Magneti ra and N.1 , 1996.	agnetism', S ectricity and ctricity and Magnetism ism', Himala K. Sehgal, T	. Chanc l Magne Magne i', McG aya Put Electric	45 1 & Comp netism', R etism', S. raw Hill 1 plishing H plishing H	15 Dany Ltd. atan Pra Chand & Education Iouse.	New Delhi kashanMan & Company n. m', 5 th Editi	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.4.Edward M. Pa 5.5.D C Tayal, 'E REFERENCES1.D.L. Sehgal, chand& Sons2.William Hayt	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chopi , New Delhi , 'Engineerin	ty and Ma inyam, 'Ele ok of Elec tricity and <u>d Magnet</u> ra and N.1 ra and N.1 ra Electron	agnetism', S ectricity and ctricity and Magnetism ism', Himal K. Sehgal, T magnetism',	. Chanc I Magne Magne I', McG aya Pul Electric TMH	45 d & Completism', R etism', S. eraw Hill 1 plishing H	15 Dany Ltd. atan Pra Chand & Educatio Iouse. Magnetisi	New Delhi kashanMan & Company n. m', 5 th Editi	60 , 2008. dir, Agra, Ltd. New
 TEXT BOOKS R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pa D C Tayal, 'E REFERENCES D.L. Sehgal, chand& Sons William Hayt D. Kraus,'Intr 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop , New Delhi , 'Engineerin oduction to	ty and Ma inyam, 'Ele ok of Elec tricity and d Magneti ra and N.1 , 1996. ng Electron Electron	agnetism', S ectricity and ctricity and Magnetism ism', Himala K. Sehgal, T magnetism', agnetic The	. Chanc l Magne d', McG aya Put Electric TMH ory', W	45 4 & Completism', R etism', S. raw Hill 1 bishing H eity and N ed. iley Easter	15 pany Ltd. atan Pra Chand & Educatio Iouse. Magnetiss ern.	New Delhi kashanMan & Company n. m', 5 th Edit	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.4.Edward M. P 5.5.D C Tayal, 'E REFERENCES1.D.L. Sehgal, chand& Sons2.William Hayt 3.3.D. Kraus,'Intr4.Benjamin Cur	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop , New Delhi , 'Engineerin roduction to mmings, 'Int	ty and Ma inyam, 'Ele ok of Elec tricity and d Magnett ra and N.1 , 1996. ng Electrom Electroma troduction	agnetism', S ectricity and ctricity and Magnetism ism', Himala K. Sehgal, T magnetism', agnetic Theo to Electrod	. Chanc l Magne Magne i', McG aya Put Electric TMH ory', W	45 4 & Completism', R etism', S. raw Hill 1 bity and N ed. iley Easter cs', 3rd Ec	15 pany Ltd. atan Pra Chand & Educatio Iouse. Magnetiss ern. lition	New Delhi kashanMan & Company n. m', 5 th Editi	60 , 2008. dir, Agra, Ltd. New
TEXT BOOKS1.R. Murugesha2.Brijlal and N 2000.3.K.K.Tiwari, ' Delhi, 2002.4.Edward M. Pr 5.5.D C Tayal, 'EREFERENCES1.D.L. Sehgal, chand& Sons2.William Hayt3.D. Kraus,'Intr 4.4.Benjamin Cur 5.5.J H Fewkes&	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop , New Delhi , 'Engineerin oduction to mmings, 'Int	ty and Ma inyam, 'Ele ok of Elec tricity and d Magneti ra and N.1 , 1996. ng Electron Electroma troduction , 'Electricit	agnetism', S ectricity and ctricity and l Magnetism ism', Himala K. Sehgal, T magnetism', agnetic Theo to Electrod ty and Magr	. Chanc I Magne Magne I', McG aya Pul Electric TMH ory', W lynamic netism',	45 4 & Completism', R etism', S. eraw Hill 1 blishing H etity and N ed. iley Easter cs', 3rd Ec Oxford U	15 Dany Ltd. atan Pra Chand & Educatio Iouse. Magnetiss ern. lition Jniversit	New Delhi kashanMan & Company n. m', 5 th Editi	60 , 2008. dir, Agra, Ltd. New
 R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pr D C Tayal, 'E REFERENCES D.L. Sehgal, chand& Sons William Hayt D. Kraus,'Intr Benjamin Cut J H Fewkes& 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop , New Delhi , 'Engineerin roduction to mmings, 'Int JYarwood	ty and Ma inyam, 'Ele ok of Elec tricity and d Magneti ra and N.1 , 1996. g Electron Electroma troduction ,'Electricit	agnetism', S ectricity and ctricity and Magnetism ism', Himala K. Sehgal, T magnetism', agnetic Theo to Electrod ty and Magn	. Chanc l Magne Magne l', McG aya Put Electric TMH ory', W lynamic netism',	45 4 & Completism', R etism', S. raw Hill I bity and N ed. iley Easter cs', 3rd Eo Oxford U	15 pany Ltd. atan Pra Chand & Education Iouse. Magnetist ern. lition Jniversity	New Delhi kashanMan & Company n. m', 5 th Editi	60 , 2008. dir, Agra, Ltd. New
 R. Murugesha Brijlal and N 2000. K.K.Tiwari, ' Delhi, 2002. Edward M. Pr D C Tayal, 'E REFERENCES D.L. Sehgal, chand& Sons William Hayt D. Kraus,'Intr Benjamin Cu J H Fewkes& 	an, 'Electrici I. Subrahma A Text Boo urcell, 'Elect lectricity an K.L. Chop , New Delhi , 'Engineerin oduction to mmings, 'Int JYarwood.	ty and Ma inyam, 'Ele ok of Elec tricity and d Magnett ra and N.1 , 1996. g Electroma troduction ,'Electricit Mapping	agnetism', S ectricity and ctricity and l Magnetism ism', Himali K. Sehgal, T magnetism', agnetic Theo to Electrod ty and Magr	. Chanc l Magne Magne i', McG aya Pul Electric TMH ory', W lynamic netism',	45 4 & Completism', R etism', S. raw Hill 1 bishing F etity and N ed. iley Easter cs', 3rd Ec Oxford U educom	15 Dany Ltd. atan Pra Chand & Educatio Iouse. Magnetist ern. lition Jniversity es	New Delhi kashanMan & Company n. m', 5 th Edit	60 , 2008. dir, Agra. Ltd. New

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO1	3	3	0	3	3	3	0	1
CO ₂	3	3	1	3	2	3	0	1
CO ₃	3	3	1	3	2	3	3	2
CO ₄	3	3	1	3	2	3	0	2
CO5	3	3	1	3	2	3	0	2
	15	15	4	15	11	15	2	8
Scaled to 1, 2, 3	3	3	1	3	3	3	1	2

XPH205 ATOMIC PHYSICS

COURSE OUTCOMES:

CO1. Cog., A: R,U, An, E; *Recall* Atomic structure, *Compare* various atom models, *Distinguish* various potentials and *Explain* special quantization and spectra of atom.

- CO2. Cog: U, An; *Demonstrat*e alkali spectra of atom, *Compare* LS &JJ couplings, *Distinguish* X-rays and Analyze various applications of X-ray.
- CO3. Cog., A: U, E; *Explain* the dual nature of particles and uncertainty principle.
- CO4. Cog: R, E; *Define* matter waves and wave amplitude and *Explain* Schrodinger equation for non-relativistic particles.
- CO5. Cog: U, E; *Explain* physical interpretation of wave function, probabilities, normalization and tunneling across a rectangular potential barrier.

<u> </u>					
COURSE CODE	COURSE NAME	L	Т	Р	С
XPH205	ATOMIC PHYSICS	3	1	0	4
		L	Т	Р	Η
		3	1	0	4
UNIT I Atomic Structure					

Atom models – spectral series of hydrogen atom – Excitation of atoms – Critical, Excitation and Ionisation Potential – Experimental determination of critical potential - Frank and Hertz's method – Sommerfield atom model – Qualitative treatment – Derivation of condition for the allowed elliptical orbits – Quantum numbers associated with Vector atom model – Paul's exclusion principle – The periodic classification of elements (Periodic table) – Bohr magnetron – spatial quantization – Stern and Gerlach experiment. Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra– Bohr's quantization rule and atomic stability– calculation of energy levels for hydrogen like atoms and their spectra.

UNIT II Atomic spectra

11+3

7+3

7+3

9+3

Atomic Spectra of hydrogen – deuteron and alkali atoms – spectral terms – doublet fine structure – screening constants for alkali spectra for s, p. d, and f states – selection rules. Singlet and triplet fine structure in alkaline earth spectra – L-S and J-J couplings – Weak spectra – continuous X-ray spectrum and its dependence on voltage – Duane and Haunt's law – Characteristics X-rays – Moseley's law – doublet structure and screening parameters in X-ray spectra – X-ray absorption spectra.

UNIT III Matter Waves

Position measurement- gamma ray microscope thought experiment– Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory– Estimating minimum energy of a confined particle using uncertainty principle– Energy-time uncertainty principle.

UNIT IV Schrodinger Equation and its Applications

Two slit interference experiment with photons, atoms and particles – linear superposition principle as a consequence – Matter waves and wave amplitude – Schrodinger equation for non-relativistic particles – Momentum and Energy operators– stationary states.

Unit V Physical interpretation and Energy spectra

Physical interpretation of wave function, probabilities and normalization– Probability and probability current densities in one dimension – One dimensional infinitely rigid box- energy eigen values and eigen functions, normalization– Quantum dot as an example– Quantum mechanical scattering and tunnelling in one dimension - across a step potential and across a rectangular potential barrier.

		LECTURE	TUTORIAL	TOTAL			
		45	15	60			
TI	EXT BOOKS						
1.	Arthur Beiser, Concepts of Modern Physics, 2002, N	AcGraw-Hill.					
2.	Rich Meyer, Kennard, Coop, Introduction to Modern	n Physics, 2002	, Tata McGraw	Hill			
3.	3. David J. Griffith, Introduction to Quantum Mechanics, 2005, Pearson Education						
4.	4. Jewett &Serway, Physics for scientists & Engineers with Modern Phys., 2010, Cengage						
	Learning.						
5.	A.K. Ghatak and S. Lokanathan, Quantum Med	chanics: Theor	y & Applicati	ons, 2004,			
	Macmillan.						
6.	C.H. Holbrow, J.N. Lloyd, J.C. Amato, E. Galvez	et.al.Modern I	ntroductory Phy	sics, 2010,			
	Springer.						
RI	EFERENCES						
1.	John R. Taylor, Chris D. Zafiratos, Michael A. Dubs	son,Modern Ph	ysics, 2004, PHI	Learning.			
2.	H.S. Mani and G.K. Mehta, Introduction of Modern	Physics, 1988,	Affiliated East-	West			
	Press.						

3. Thomas A. Six Ideas that Shaped Physics: Particle Behave like Waves, Moore, 2003, McGraw Hill

wapping with r togramme Outcomes									
Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈	
CO1	3	2	0	3	3	3	0	1	
CO ₂	3	2	1	2	3	2	0	1	
CO ₃	3	2	1	2	3	2	3	2	
CO ₄	3	2	1	2	3	2	0	2	
CO ₅	3	2	1	2	3	2	0	2	
	15	10	4	11	15	11	2	8	
Scaled to 1, 2, 3	3	2	1	3	3	3	1	2	

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH206		0	0	3	2
	PHYSICS PRACTICAL –II	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

- CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.
- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.

CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge

LIST OF EXPERIMENTS

- 1 Young's modulus Uniform bending Scale and telescope.
- 2 Young's modulus Uniform bending Pin and microscope.
- 3 Static torsion determine the rigidity modulus.
- 4 Potentiometer –Voltmeter calibration(low range)
- 5 Meter bridge determination of specific resistance.
- 6 Potentiometer Thermister Temperature Coefficient.
- 7 Meter bridge verification of laws of resistance.
- 8 Potentiometer Internal resistance of cells.
- 9 Sonometer Verification of laws.
- 10 Comparison of surface tension by capillary rise method.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

mapping with i togramme Outcomes										
COs	PO 1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈		
CO ₁	3	1		2	1	2	3	3		
CO ₂	3	1		2	1	2	3	2		
CO ₃	3	1		1	1	2	2	1		
CO ₄	3	1		2	1	2	3	2		
	12	4		7	4	6	11	8		
Scaled to 1, 2, 3	3	1		2	1	2	3	2		

Mapping with Programme Outcomes

XPH301 PHYSICS WORKSHOP SKILLS

COURSE OUTCOMES:

- CO1. Cog: U, Ap; *RelateSI* and CGS units and *Apply* their knowledge in various measuring instruments.
- CO2. Cog:Ap, An; *Recall andDevelop* their knowledge to find welding defect & handling of various tools and *Distinguish* like metal, composites and alloy materials.
- CO3. Cog:Ap; Apply their knowledge to handle multimeter and soldering to construct circuit.
- CO4. Cog: U, Ap; *Identify* the diode, transistor and FET ICs on PCB and *Construct* the regulated power supply and timer circuits.
- CO5. Cog:U, C; *Infer* small mechanism of lever, break and gear and *Adapt* working principle of power generation system.

r · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
COURSE CODE	COURSE NAME	L	Т	Р	С	
XPH301	PHYSICS WORKSHOP SKILLS	0	0	2	2	
		L	Т	Р	Η	
		0	0	2	2	
UNIT - I Me			,	7		

Measuring units, conversion to SI and CGS., Familiarization with meter scale, Vernier caliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc. Use of Sextant to measure height of buildings, mountains, etc..

UNIT - II Mechanical Skill

Concept of workshop practice, Overview of manufacturing methods: casting, foundry, machining, forming and welding - Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Concept of machine processing - introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools - lubricating oils - Cutting of a metal sheet using blade - Smoothening of cutting edge of sheet using file – Drilling of holes of different diameter in metal sheet and wooden block – Use of bench voice and tools for fitting – Make funnel using metal sheet.

UNIT - IIIElectrical skill9Use of Multimeter – Soldering of electrical circuits having discrete components (R, L and C)9Unit - IV Electronic Skill9

Basic principle of diode, transistor and FET - ICs on PCB - Operation of oscilloscope – Making regulated power supply, timer circuit, electronic switch using transistor and relay

UNIT - V Introduction to prime movers	9
Mechanism, gear system, wheel, fixing of gears with motor axel - Lever me	echanism - lifting of
heavy weight using lever, breaking systems, pulleys, working principle of	of power generation
systems – demonstration of pulley experiment.	

TUTORIAL	PRACTICAL	TOTAL
15	30	45

11

TEXT BOOKS

1. B.L. Theraja, A text book in Electrical Technology, S. Chand and company.

- 2. M.G. Say, Performance and design of AC machines, ELBS Edn.
- 3. K.C. John, Mechanical workshop practice, 2010, PHI learning Pvt, Ltd.

REFERENCES

- 1. Bruce J. Black, Workshop processes, practices and materials, 2005, 3rdEdn., Editor Newnes [ISBN: 0750660732].
- 2. Lawrence Smyth/Liam Hennessy,New engineering technology, The Educational company ofIreland [ISBN: 0861674480]

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO1	3	2	0	3	2	3	0	1
CO ₂	3	2	1	3	2	3	0	1
CO ₃	3	2	1	3	2	3	3	2
CO ₄	3	2	1	3	2	3	0	2
CO ₅	3	2	1	3	2	3	0	2
	15	10	4	15	10	15	2	8
Scaled to 1, 2, 3	3	2	1	3	3	3	1	2

Mapping with Programme Outcomes

XPH303 HEAT AND THERMODYNAMICS								
COURSE OUTCOM	IES:							
CO1. Cog., A: R,U; A	Recall Cp and Cv and basic concepts of specific he	at and	d <i>Ex</i>	plai	n va	arious		
theories.								
CO2. Cog: An, E;	<i>Explain</i> the nature of heat and heat transmission	and I	Distin	gui	sh n	nono-		
dia- triatomic ga	ises.							
CO3. Cog., A: R, U, I	E; List the laws of thermodynamics and Explain later	nt hea	t and	ent	ropy	7		
CO4.Cog: R,E,C;	Define Coefficient of Thermal Conductivity,	Deter	mine	e tł	nerm	al		
conductivity of	bad conductor and <i>Discuss</i> the various laws for heat	flow.						
CO5. Cog: U, An, E	, C; Analyze statistical equilibrium, explain variou	s dis	tribut	ion	law	s and		
<i>Compare</i> the t	hree statistics							
COURSE CODE	COURSE NAME	L	Т	Р	С			
XPH303	HEAT AND THERMODYNAMICS	3	1	0	4			
		L	Т	Р	Η			
		3	1	0	4			
UNIT ISPECIFIC H	EAT				10)+3		
Specific Heat – Speci	fic Heat of a Liquid by Joule's Electrical Method, Sp	ecific	Heat	of	a C	Gas –		
Mayer's Relation -	Specific Heat of a gas at Cv – Joly's S	Steam	Calo	rim	eter	– C p		
Regnault's Method -	Dulong and Petit's Law – Variation of Specific Hea	t and	Ator	nic	Heat	t with		
Temperature – Debye	's theory – Einstein's Quantum Theory.							
UNIT IINATURE O	F HEAT				7-	+3		
Degrees of freedom	and Maxwell's Law of Equipartition of Energy -	- Ato	omici	ty c	ofGa	.ses –		
Monatomic – Diatom	ic – Triatomic Gases – Molecular velocity distribution	onMa	xwel	l's I)eriv	vation		
– Mean Free Path – Transport Phenomena – Viscosity of Gases – Thermal Conductivity of Gases.								
UNIT IIITHERMODYNAMICS 8+3								
Carnot's Theorem – Thermodynamic Scale of Temperature –Clapeyron Latent Heat Equation –								
Entropy – Change	of Entropy in a Reversible and Irreversible P	roces	s –	3 rd	La	w of		

Thermodynamics – T-S Diagram – Entropy of a Perfect Gas – Zero Point Energy And Negative							
Temperature – Maxwell's Thermodynamical Relations De	Derivation.						
UNIT IV TRANSMISSION OF HEAT			10+3				
Coefficient of Thermal Conductivity - Lee's Disc m	nethod for l	oad conductors	Radial and				
cylindrical flow of heat - Wiedmann - Franz law - S	Stefan's law	v–Mathematica	l derivation –				
Newton's law of cooling from Stefan's law -Experime	nental verific	ation - Stefan	's constant –				
Experimental determination.							
UNIT VSTATISTICAL THERMODYNAMICS			10+3				
Statistical equilibrium -M.B. distribution law -M.B. dis	stribution la	w in terms of t	emperature –				
application to ideal gas - Quantum Statistics - Phase s	space – Ferr	ni-Dirac Distrib	oution Law –				
Electron gas - Fermi energy - Bose - Einstein Distribut	tion Law –	Photon gas – C	omparison of				
three statistics.		-	_				
	LECTURE	TUTORIAL	TOTAL				
45	5	15	60				
TEXT BOOKS							
1. Brijlal and Subramanium, Heat and Thermodyna	namics,S.Cha	nd Publishers	& Co, New				
Delhi 2004.							
2. J.B.Rajam, Heat and Thermodynamics, S.Chand Pu	ublishers						
3. S. D. S. Mathur, Heat and Thermodynamics, Chan	nd & Co, New	v Delhi 2004.					
REFERENCES							
1. Brijlal, N.Subrahmanyum and P.S.Hemne, Therm	nodynamics	and Statistical	physics(multi				
colour edn.7).	-		•				
2. Mark W Zemansk, Richard H Dittman, Heat and T	Fhermodynai	nics (seventh E	dn.)				
3. Francis W.Sears& Gerhard L Salinger, Thermodynamics, Kinetic Theory, Statistical –							
Thermodynamics.		· · · · · · · · · · · · · · · · · · ·					

Mapping with Fregramme Outcomes										
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈		
CO 1	3	2	0	3	3	3	0	1		
CO ₂	3	2	0	2	3	2	0	1		
CO ₃	3	2	0	2	3	2	3	2		
CO ₄	3	2	0	2	3	2	0	2		
CO ₅	3	2	0	2	3	2	0	2		
	15	10	0	11	15	11	2	8		
Scaled to 1, 2, 3	3	2	0	3	3	3	1	2		

Mapping with Programme Outcomes

XPH304 BASIC ELECTRONICS

COURSE OUTCOMES:

- CO1. Cog., A: R, Ap; *Recall* the function of PN junction diode, zener diode LED and *Construct* the full wave rectifier filters, regulated power supply- zener regulator, photo diode.
- CO2.Cog: U, E; *Demonstrate* the transistor construction and working characteristics, *Determine* the h- parameters.
- CO3. Cog: U, E; *Compare* the FET and Transistorand *Explain* the characteristics & applications of special semiconductor devices.
- CO4. Cog: U, C, E; *Classify*Amplifiers, *Discuss* the feedback principle for amplifier, Oscillators and *Explain* the Hartley and Collpitt's oscillators.

CO5. Cog: An., E; *Distinguish* the modulations and *Appraise* the function of detectors.

COURSE CODE	COURSE NAM	E	L	Т	P	С		
XPH304	BASIC ELECTRO	NICS	3	1	0	4		
			L	Т	Р	Н		
			3	1	0	4		
UNIT 1: DIODES AN	ND RECTIFIERS				7	′ +3		
PN Junction diode –	characteristics- Zener diode - Ch	aracteristics- L	ED- Full	wave	recti	fier -		
ripple factor - filters -	L-section, II-section filters - zen	er voltage regu	lated powe	er sup	ply,]	Photo		
Diode and Uses.								
UNIT 2: TRANSIST	ORS				1	.0+3		
Junction Transistors –	construction – Mechanism of ampl	ification – Mod	les of oper	ation	– Alf	bha &		
Beta of a Transistor –	Current expression – Transistor sta	tic characterist	ics in CB a	and C	E mo	des –		
Transistor biasing (v	voltage divider biasing) – Two	port represent	tation of	a Tr	ansis	tor –		
Parameters- Determina	ation of h-parameters.							
UNIT 3: SPECIAL D	DEVICES				9	/+3		
Special semiconducto	r devices – FET, JFET, MOSFI	ET (Construction	on And W	/orkir	1g) -	FET		
parameters – Comp	arison between FET and Tran	sistor - Photo	otransistor	– S	CR,	UJT		
characteristics- Applic	ations of SCR as relay and UJT as	relaxation osci	llator.					
UNIT 4: AMPLIFIE	RS AND OSCILLATORS				9	1+3		
Power amplifie	er – Class A power amplifier –Clas	s B power amp	lifier - Pus	h pul	I - G	ain of		
amplifier with feedba	ck – Effects of negative feedbac	k – Oscillator	s – Types	- C	oncep	ots of		
feedback oscillators -	Hartley and Collpitt's oscillators.							
UNIT 5: MODULAT	ORS AND DETECTORS				1	.0+3		
Modulation –	Amplitude modulation-Modulat	ion factor –	Power in	AM	way	ves –		
Limitations of amplitu	de modulation-Frequency modula	tion – Phase m	odulation -	-Dem	odula	ation-		
Essentials in demodula	ation- Linear Diode Detector.							
		LECTURE	TUTOR	[AL	TO	ГAL		
		45	15		60			
TEXT BOOKS			-					
1. V.K. Mehta, Principles of electronics, S.Chand& Co 7 th Rev. Edition (2005).								
2. N.Bhargava, D.Kulshreshtha and S.Gupta, Basic Electronics and Linear Circuits, Tata								
McGraw-Hill Publ	ishing Co (1983).							

REFERENCES

- 1. Sarjeer Gupta, Electronic Devices and circuits, Dhaanpat rai Publications New Delhi Reprint 2008.
- 2. A. Ambrose and T.Vincent Devaraj, Elements of solid state electronics, Mera publications 1993.
- 3. R.Muthusubramanian, S. Salivahanan, K.A. Muraleedharan, Basic electrical, Electronics and computer Engineering, Tata McGraw Hill publishing Co. Ltd., New Delhi Reprint (2004)
- 4. Jacob Millman, Christos C. Halkias, Electronic Devices and circuits, Tata McGraw Hill publishing Co., Ltd., New Delhi Reprint (2002).

Mapping with Programme Outcomes

		11 0		5				
Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈

CO ₁	3	2	0	2	3	3	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	1	2	3	2	3	2
CO ₄	3	2	1	2	3	2	0	2
CO5	3	2	1	2	3	2	0	2
	15	10	3	10	15	11	2	8
Scaled to 1, 2, 3	3	2	1	2	3	3	1	2

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH307		0	0	3	2
	PHYSICS PRACTICAL –III	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.

CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.

CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: Ap; Aff: Rec, Org;Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge.

LIST OF EXPERIMENTS

- 1. Sonometer- Determination of unknown frequency and unknown weight.
- 2. Melde's string Determination of frequency.
- 3. Transistor characteristics common Emitter.
- 4. Newton's law of cooling Specific heat capacity of the liquid.
- 5. Junction diode and Zener diode Characteristics.
- 6. Carey Foster Bridge Temperature Coefficient.
- 7. Lee's disc –specific heat capacity of the bad conductor.
- 8. Specific heat by Joules calorimeter.
- 9. Potentiometer- high range voltmeter
- 10. Zener Regulated Power Supply.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈			
CO ₁	3	1		2	1	2	3	3			
CO ₂	3	1		2	1	2	3	2			
CO ₃	3	1		1	1	2	2	1			
CO ₄	3	1		2	1	2	3	2			
	12	4		7	4	6	11	8			
Scaled to 1, 2, 3	3	1		2	1	2	3	2			

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH401 ELECTRICAL CIRCUIT NETWORK SKILLS

COURSE OUTCOME:

- CO1. Cog., A: R,U,An; *Recall* Basic Electricity Principles, *Analyze* electrical circuits and *Distinguish* single phase and three phase
- CO2. Cog., A: R,U,E,An; *Recall* symbols, *Explain* circuits and diagram, *Distinguish* capacitance, inductance and impedance
- CO3. Cog: R, An; *Describe* DC&AC power sources, *Distinguish* DC/AC Generator and motor.

CO4. Cog., A: U, E; *Classify* all Solid-State Devices, *Explain* response of inductors and capacitors with sources. *Describe* how the electrical components are protected.

CO5. Cog., A: An, C; *Discuss* about electrical wiring and *Distinguish* the types of wiring.

COURSE CODE	COURSE NAME	L	Т	Р	С
XPH401	ELECTRICAL CIRCUIT NETWORK SKILLS	0	0	3	2
		L	Т	Р	Η

	0	0	3	3			
UNIT I Electrical Principles and Circuits			1	7+3			
Basic Electricity Principles: Voltage, current, resistance and power	er – Ohm	i's law		Series,			
parallel and series-parallel combinations - AC Electricity and DC el	ectricity -	- Fami	liari	zation			
with multimeter, voltmeter and ammeter.							
Understanding Electrical Circuits: Main electric circuit elements and	their con	nbinatio	on –	Rules			
to analyze DC sourced electrical circuits - Current and voltage dr	op across	the I	C	circuit			
elements - Single-phase and three-phase alternating current sources	s – Rules	to an	alyz	e AC			
sourced electrical circuits - Relay, imaginary and complex power con	mponents	of AC	soi	urce –			
Power factor – Saving energy and money.							
UNIT II Electrical Drawing and Components				6+3			
Drawing symbols – Blueprints – reading schematics – ladder diagram	s – electri	cal sch	nema	atics –			
Power circuits – control circuits – Reading of circuit schematics – Tr	acking th	e conn	ecti	ons of			
elements and identify current flow and voltage drop. Inductance - c	apacitance	e – im	peda	ance –			
Operation of transformers.							
UNIT III Electric Generators and Motors				6+3			
DC power sources – AC/DC generators – Single-phase and three-phase	DC moto	rs – Ba	sic (design			
- Interfacing DC or AC sources to control heater &motors - Speed & p	ower of A	C mot	or.				
UNIT IV Electrical devices and protection				7+3			
Solid-State Devices: Resistors – inductors – capacitors – diode and a	rectifiers	- com	pone	ents in			
series or in shunt – response of inductors and capacitors with DC or AC	sources.						
Electrical Protection: Relays – Fuses and disconnect switches – ci	rcuit brea	akers -	- OV	erload			
devices – Ground-fault protection – Grounding and isolating – phase re	versal – s	urge pi	otec	ction –			
interfacing DC or AC sources to control elements (relay protection devi	ce).						
UNIT V Electrical Wiring				5+3			
Different types of conductors and cables – Basics of wiring – Star and	delta conr	lection	– V	oltage			
drop and losses across cables and conductors – Instruments to measure	current -	voltag	;e –	power			
in DC and AC circuits – Insulation – solid and standard cable – Conduit Cable trays – Splices :							
wire nuts – crimps –terminal blocks – split bolts and solder – Preparation of extension board.							
LECTURE	TUTO	RIAL	TC)TAL			
45	15		60				

Mapping with Programme Outcomes										
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈		
CO ₁	3	2	0	3	3	3	0	1		
CO ₂	3	2	0	2	3	2	0	1		
CO ₃	3	2	0	2	3	2	3	2		
CO ₄	3	2	0	2	3	2	0	2		
CO ₅	3	2	0	2	3	2	0	2		
	15	10	0	11	15	11	2	8		

1.B.L. Theraja, A text book in Electrical Technology, S Chand & Co. New Delhi.

2. A. K. Theraja, A text book of Electrical Technology.

1. MG Say, Performance and design of AC machines, ELBS Edn.

TEXT BOOKS

REFERENCES

Scaled to 1, 2, 3	3	2	0	2	3	3	1	2		
2 Starsen 2 Madimus 1 Land										

3 – Strong: 2 – Medium: 1 – Low

XPH403 WAVES AND OPTICS

COURSE OUTCOMES:

- CO1. Cog.:R,U;*Define* super position principle and *Relate* the collinear and perpendicular harmonic oscillators.
- CO2. Cog.: R,E;*Recall* transverse wave, *List* the types of waves and *Explain* Group velocity, phase velocity

CO3. Cog.: R, Ap; What is interference and Identity various method to produce interference.

CO4. Cog.: R, An; Define diffraction and Analyze diffraction effect.

CO5. Cog.: U, An; *Explain* polarization and *Distinguish* the polarizer and analyser

COURSE CODE	COURSE NAME	L	Т	Р	С				
XPH403	WAVES AND OPTICS	3	1	0	4				
		L	Т	Р	Н				
		3	1	0	4				
UNIT - I Superp	osition of Harmonic Oscillations			6	<u>5</u> +3				
Superposition of Ty	wo Collinear Harmonic Oscillations: Linearity	and	Supe	r po	sition				
Principle (1) Oscillat	tions having equal frequencies and (2) Oscillat	ions h	aving	dif	ferent				
frequencies (Beats) Superposition of Two Perpendicular Harmonic Oscillations : Graphical									
and analytical methods	s, Lissajous figures (1:1 and 1:2) and their uses.								
UNIT - IIWave Motion10+3									
General : Transverse	waves on a string. Travelling and standing waves	on a	string	. No	ormal				
Modes of a string.	Group velocity, Phase velocity. Plane waves, Sp	herical	l wav	ves, V	Wave				
intensity.									
Wave optics: Electromagnetic nature of light. Definition and properties of wave front Huygens									
Principle.									
UNIT – IIIInterferen	ce			1	3+3				
Division of amplitude	and division of wave front. Young's Double stilt	exper	iment	. Ll	oyd's				
Mirror and Fresnel's	Biprism, Phase change on reflection: Stokes' treat	ment.	Inter	feren	ce in				
Thin films: parallel a	nd wedge shaped films. Fringes of equal inclinatio	n (Haio	dinge	r Frir	iges);				
Fringes of equal thick	ness (Fizeau Fringes). Newton's Rings: measurem	ent of	wave]	engt	h and				
refractive index.									
UNIT - IV Diffrac	tion			1	4+3				
Fraunhofer diffraction	: Single slit; Double slit, Multiple slits & Diffrac	ction g	rating	g. Fi	esnel				
Diffraction: Half period	od Zones. Zone plate, Fresnel Diffraction pattern of	f a stra	ight e	edge,	a slit				
and a wire using half p	period zone analysis.								
UNIT - V Polariz	ation			5	i+ 3				
Transverse nature of li	ight waves. Plane polarized light – production and	analysi	s. Ci	rcula	r and				
elliptical polarization.									
	LECTURE T	UTOR	IAL	TO	TAL				
	45 15			60					
TEXT BOOKS									
1. F.A. Jenkins and H.	E. White, Fundamentals of Optics, 1976, McGraw H	Hill.							

2. B.K. Mathur, Principles of Optics, 1995, Gopal Printing.

3. H.R. Gulati and D.R. Khanna, Fundamentals of Optics, 1991, R. Fhand Publication.

REFERENCES

1. F.W. Sears, M.w. Zemansky and H.D.Young, University Physics, 13 / e, 1986 Addison - Wesley.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO1	3	2	0	3	3	1	0	1
CO ₂	3	3	0	1	2	1	0	1
CO ₃	3	3	0	1	2	1	3	2
CO ₄	3	3	0	1	2	1	0	2
CO5	3	3	0	1	2	1	0	2
	15	14	0	7	11	5	2	8
Scaled to 1, 2, 3	3	3	0	2	3	1	1	2

Mapping with Programme Outcomes

XPH404 DIGITAL ELECTRONICS

COURSE OUTCOMES:

CO1. Cog.: Ap., An., C;*Analyze* various number systems and codes, *Develop* their knowledge to do arithmetic calculations and *Discuss* operation of all the gates.

- CO2. Cog.: U;Show the simplification of Boolean expression using the methods of Boolean algebra and Karnaugh map.
- CO3. Cog.:Ap;*Solve* the arithmetic calculations by a fixed function of combinational logical circuits and their implementation
- CO4. Cog.:Ap.,C;*Develop*the fundamentals flip flops, registers and counters, and *Design* the sequential logic circuits.
- CO5. Cog.: U;*Demonstrate* the Characteristics and Parameters of the operational amplifier and its parameter and *Classify* inverting- non inverting, Adder-subtractor, differentiator-integrator and comparators.

COURSE CODE	COURSE NA	ME	L	Т	Р	С		
XPH404	ANALOG & DIGITAL	ELECTRONICS	3	1	0	4		
			L	Т	Р	Н		
			3	1	0	4		
UNIT 1 Semiconducto	or Devices				9	+3		
semiconductors - int	rinsic an extrinsic semicondu	ictors - Fermi leve	el (No	Der	ivati	on) -		
Mechanism of Currer	t Conduction - PN Junction I	Diode - Zener diode	- LE	D - S	Solar	Cell.		
Transistor: Constructi	on - Mechanism of Amplific	ation - Current cor	nponen	its -	Mod	es of		
operation - Transistor	amplifier.							
UNIT2Operational Ar	nplifier				9	+3		
Ideal op-amp - Inve	rting and non-inverting ampli	fiers - summing a	nplifie	r - c	liffer	ential		
amplifier -integrator -	differentiator - CMRR. A/D &	& D/A converters Ir	troduc	tion -	wei	ghted		
resistor D/A converter - ladder network D/A converter - BCD D/A converter. A/D converters:								
flash A/D converter - successive approximation converter - dual Slope A/D converter.								
UNIT 3 Boolean Algebra & Combinational Logic Circuit Design9+3								
Basic logic gates - N	AND, NOR, XOR and XNO	R gates and their t	ruth ta	bles	- Bo	olean		
postulates - Boolean la	aws - Simplification of Boolean	algebraic expression	s - Un	versa	I Bu	lding		
Blocks – NAND / NC	R logic: Minterms and Maxteri	ns - $2,3,4$ variable K	arnaug	gh ma	p des	sign -		
SOP and POS redu	ction - don't care states.; D	esign of decoder,	encode	er, m	ultip	lexer,		
demultiplexer circuits	using gates - half adder, full add	ler, half subtractor at	id full s	subtra	ictor	using		
gates.	agistars & Countars: Elin flore					1.2		
DSD IV & T flip flop	egisters & Counters: Filp-flops	nd condition IV M	laston C	lava	۲ Tlin	+J flor		
Converting IV flip fl	s - clocked hip-hops - face afor	agisters: Types sh	aster-2	olave	rnp-	Hop -		
registers using D & H	flip flops Counters: types h	inary ripple counter	mod		i Siiii ntor	ring		
counter - Johnson cou	ter - wave forms for counters	mary ripple counter	- mou	5 000	mer	- mg		
UNIT 5 Design of a D	igital Computer				0	13		
Instruction Code - Co	mputer registers - Computer In	structions - Timing	nd Co	ntrol	- Me	mory		
hierarchy - main men	norv - RAM ROM EPROM I	EEPROM UVEPRC	M - C	ache	mem	norv -		
virtual memory								
· internal internet j.		LECTURE T	TOR	IAL	ТО	TAL		
	25							

	45	15	60
TEXT BOOKS			

- 1. R.S.Sedha, Textbook of Applied Electronics 3rd ed., S.Chand & Co. (For Unit I)
- 2. John D.Ryder, Electronic Fundamentals & Applications (5th ed., PHI) (For Units II to IV)
- 3. M.Morris Mano Computer System Architecture (3rd ed., PHI) (For Unit- V).

REFERENCES

1. Virendni Kumar, Digital Technology — Principles & Practice (1 st ed. New Age International Pvt. Ltd.)

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO 1	3	2	0	3	3	3	0	1
CO ₂	3	1	0	1	3	2	0	1
CO ₃	3	1	0	1	3	2	3	2
CO ₄	3	1	0	1	3	2	0	2
CO ₅	3	1	0	1	3	2	0	2
	15	6	0	7	15	11	2	8
Scaled to 1, 2, 3	3	2	0	2	3	3	1	2

Mapping with Programme Outcomes

COURSE CODE	SUBJECT NAME	L	Т	Р	C
XPH406		0	0	3	2
	PHYSICS PRACTICAL –IV	L	Т	Р	Н
		0	0	3	3
COURSE OU	TCOMES:		1		1
CO1: Cog: An measu CO2: Cog: U; sessior CO3: Cog: R; the pro CO4: Cog: Ap excelle	a; Aff: Rec.; Psy: Mech; <i>Use</i> laboratory techniques rements and data analysis . Aff: Rec.; Psy: Set, GR; <i>Explain theconcepts</i> that as and <i>follow</i> hands-on learning experience in the lab Aff: Rec.; Psy: Mech; Gain <i>knowledge</i> in the scient cess of measuring different Physical variables b; Aff: Rec, Org;Psy: Mech; <i>Manipulate</i> and <i>comple</i> ant <i>application</i> knowledge.	such as are lear borator ific me <i>te</i> all th	accura nt in th y sessic thods a e exper	ncy of ne lectur ons. .nd <i>ider</i> riments	re <i>ntify</i> with
LIST OF EX	PERIMENTS				
 P.O. Box - Spectrome Bridge Red Convex let Transistor Logic gate Potention Potention Spectrome 	 resistance of the coil. ter –grating- minimum deviation. ctifier. ns –Focal length – Combination method(two types) characteristics – Common base. s IC's verification. s – Discrete components (AND, OR & NOT). eter – Calibration of ammeter. eter – Resistance of a coil ter – Dispersive Power. 				
 TEXT BOOKS 1. BSc Practic 2. An Advance Central Boo 3. A Text Boo Semester 1 4. Shukla R. K Publishers, 5. Arora C. L. 	S al Physics, C. L. Arora, (S. Chand) ed Course in Practical Physics, D. Chattopadhyay ar ok Agency) k of Advanced Practical Physics, S. Ghosh, (New C - Physics (Honours) Theory Paper. C. and Anchal Srivastava, Practical Physics, New Ag 2006. , B.Sc Practical Physics, S. Chand and Company Lto	nd P. C. Jentral I ge Inter 1, 2007	Raksh 300k A nationa	it, (Nev gency) l (P) Lt	w 7 td,
REFERENCI 1. Squires G. I 2. Halliday D and Sons, 2 3. Jenkins F.A Company, 2 4. Geeta Sanon 5. Benenson, N	ES L., Practical Physics, 4 th Edition, Cambridge Unive ., Resnick R. and Walker J., Fundamentals of Physic 2001. . and White H.E., Fundamentals of Optics, 4th Edit 2007. n, B. Sc., Practical Physics, 1st Edition, S. Chand ar Walter, and Horst Stocker, Handbook of Physics. Sc	ersity Pres, 6th I ion, Mc id Com pringer.	ress, 20 Edition Graw pany, 2 2002.	01. , John V Hill Bo 007.	Wiley ook
,	27				

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
	12	4		7	4	6	11	8
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH501 BASIC INSTRUMENTATION SKILLS

COURSE OUTCOMES:

CO1:Cog: R, U;*Classify*accuracy, precision, sensitivity, resolution range and Errorsand *Relate* DC &AC voltage and current.

CO2:Cog: An;*Distinguish* conventional voltmeter & multimeter and electronically voltmeter & multimeter

CO3:Cog :U, C;Compare CRO & CRT and Explain operations and specification of CRO.

CO4:Cog: An; *Analyze* various type of generators and rectifiers.

CO5:Cog: U; *Explain* the principle and working of digital meter and *Compare* analog & digital meters.

COURSE CODE	COURSE NAME	L	Т	Р	С			
XPH501	BASIC INSTRUMENTATION SKILLS	0	0	3	2			
		L	Т	Р	Η			
		0	0	3	3			
UNIT - I Basi	e of Measurement				7+3			
Instruments accuracy	, precision, sensitivity, resolution range etc. Errors i	n me	asure	ment	and			
loading effects - Mult	imeter: Principles of measurement of dc voltage and d	lc cui	rent,	ac c	urrent			
and resistance – Specifications of a multimeter and their significance.								
UNIT - II Electro	UNIT - II Electronic Voltmeter 8+3							
Advantage over con	ventional multimeter for voltage measurement wi	th re	spect	to	input			
impedance and sensi	tivity - Principles of voltage, measurement (bloc	k di	agran	n on	ly) –			
Specifications of an el	ectronic Voltmeter / Multimeter and their significance	- AC	c mill	ivolt	meter			
: Type of AC millivol	tmeters Amplifier - rectifier and rectifier - amplifier	– Bl	ock d	liagra	am ac			
millivoltmeter - speci	ications of a CRO and their significance.							
UNIT - III Cathod	le Ray Oscilloscope				10+3			
Block diagram of basic CRO – construction of CRT – Electron gun – electrostatic focusing and								
acceleration (Explanation only no mathematical treatment) brief discussion on screen phosphor –								
visual persistence &	chemical composition - Time base operation - synd	chron	izatio	n –	Front			

panel controls – Specifications of a CRO and their sign	ificance							
Use of CRO for the measurement of voltage (dc and ac) frequency, time period $-$ Special								
features of dual trace – introduction to digital oscilloscope – probes – digital storage								
oscilloscope. Block diagram and principle of working								
UNIT - IV Generators and Bridges			10+3					
Signal Congrators and Analysis Instruments: Block	diagram evolar	nation and specie	fication of					
low frequency signal generators – pulse generator and	function general	tor Briefides	for testing					
specifications Distortion factor mater wave analys	runetion genera	ioi – Dhei idea	for testing					
- specifications - Distortion factor fileter - wave analys	ols.	nlaing principles	of basis					
(helenging type) DLC bridge Specifications of DL	C hridge - WO	rking principles	of Dasic					
(balancing type) KLC bildge – Specifications of KI	LC bridge – D	lock diagram &	c working					
principles of a Q-meter – Digital LCR bridges.								
UNIT - V Digital Instruments and Multimeter 10+3								
Principle and working of digital meters – Compariso	on of analog &	digital meters –	- Working					
principle of time interval – frequency and period measu	rement using u	niversal counter/	frequency					
counter – time –base stability – accuracy and resolution	l .							
Test of lab skills will be of the following test items:								
Use of an oscilloscope.								
CRO as a versatile measuring device.								
Use of digital multimeter.								
Winding a coil/transformer.								
Circuit tracing of Laboratory electronic equipement.								
Trouble shooting a circuit								
Balancing of bridges.								
	LECTURE	TUTORIAL	TOTAL					
	45	15	60					
TEXT BOOKS								
1. BL Theraja A text book in electrical technology, S Chand and Co.								

2. Venugopal, Digital circuits and systems, 2011, Tata McGraw Hill.

3. Subrata Ghoshal, Digital Electronics, 2012, Cengage Learning.

REFERENCES

1. MG Say, Performance and design of AC machines -ELBS Edn.

2. Shimon O. Vingron, Logic circuit design, 2012, Springer.

mapping with rogramme outcomes											
PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈				
3	2	0	3	2	1	0	1				
3	2	0	3	2	1	0	1				
3	2	0	3	2	1	3	2				
3	2	0	3	2	1	0	2				
3	2	0	3	2	1	0	2				
15	10	0	15	10	5	2	8				
3	2	0	3	2	1	1	2				
	PO1 3 3 3 3 3 15 3	PO1 PO2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	PO1 PO2 PO3 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0 3 2 0	PO1 PO2 PO3 PO4 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 3 2 0 3 15 10 0 15 3 2 0 3	PO1 PO2 PO3 PO4 PO5 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 3 2 0 3 2 15 10 0 15 10 3 2 0 3 2	PO1 PO2 PO3 PO4 PO5 PO6 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 3 2 0 3 2 1 15 10 0 15 10 5 3 2 0 3 2 1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 3 2 0 3 2 1 0 15 10 0 15 10 5 2 3 2 0 3 2 1 1				

Mapping with Programme Outcomes

XPH502A - SOLID STATE PHYSICS

COURSE OUTCOMES:

CO1:Cog: U,Ap;*Demonstrate* and *apply* knowledge of the crystal studies.

CO2:Cog: U,Ap ,E;*Explain* and *apply* the definition of the Lattice vibrations and Phonons in lattice dynamics.

CO3:Cog : Ap; *Apply* knowledge of Dia, Para, Ferri and ferromagnetic materials.

CO4:Cog: Ap;*Solve* problems concerning the definition of the dielectric properties of materials

CO5:Cog: U, AP;*Explain* and *apply* the knowledge of energy bands of solids and their application to modern electrical devices

COURSE CODE	COURSE NA	ME	L	Т	Р	С			
XPH502A	SOLID STATE P	HYSICS	3	1	0	4			
			L	Т	Р	H			
			3	1	0	4			
UNIT - I Crysta	l Structure					7+3			
Solids: Amorphous ar	nd Crystalline Materials. Lattice	e Translation Vect	tors. Latti	ce w	th a	Basis			
– Central and Non-C	entral Elements, Unit cell, Mil	ler Indices, Recip	procal La	ttice,	Typ	bes of			
Lattices, Brillouin Zor	nes	, 1	L	,	21				
UNIT - II Elemen	ntary Lattice Dynamics					8+3			
Lattice vibrations and	d Phonons, Linear Monoatomi	c and Diatomic	Chains.	Acou	stica	l and			
optical phonons. Qua	litative Description of the Phon	on Spectrum in S	olids. Du	ılog a	and I	Petit's			
Law, Einstein and Deb	bye theories of specific heat aof s	solids, T^3 law.							
UNIT - III Magne	tic Properties of Matter					10+3			
Dia, Para, Ferri and fe	rromagnetic materials, Classical	Langevin theory	of dia- an	d Par	amag	gnetic			
Domains. Quantum M	Aechanical Treatment of Parama	agnetism. Curie's	s law, We	iss's	Theo	ory of			
Ferromagnetism and H	Ferromagnetic Domains. Discus	sion of B-H Curv	e, Hystere	esis a	nd E	nergy			
Loss.									
UNIT - IV Dielect	ric Properties of Materials					10+3			
Polarization: Local E	Electric field at an Atom, Dep	olarization Field,	Electric	Suse	cepti	bility,			
Polarizability. Clausiu	us Mosotti Equation, Classical th	eory of electric p	olarizabili	ity, N	orma	al and			
Anomalous Dispersion	n - Langevin-Debye equation.								
UNIT - V Elemen	ntary band theory					10+3			
Krong Penny model,	Band gaps, conductors, Semio	conductors and ir	nsulators,	P ar	nd N	type			
Semiconductors, cond	uctivity of semiconductors, mob	ililty, Hall effect,	Hall coeff	ficien	t.				
Superconductivity:									
Superconducting Phen	iomena, Critical temperature, cri	tical magnetic fiel	ld, Meissr	ner ef	fect,	Туре			
I and Tupe II superconductors. London's equation and Penertration Depth, Isotope effect.									
LECTURE TUTORIAL TOTAL									
		45	15			60			
TEXT BOOKS		th man account		_					
1. Charless Kittel, Intro	oduction to Solid State Physics, 8	S^{m} Ed., 2004, Wile	ey India P	vt.Lt	d.				
2. J.P. Srivastava, Eler	ments of solid state physics, 2 nd	Ed., 2006, Prentice	e-Hall of]	India.					
3. Leonid V. Azaroff, Introduction to solids, 2004, Tata Mc-Graw Hill									

REFERENCES

1. Neil W. Ashcroft and N. David Mermin, Solid State Physics, 1976, Cengage Learning.

2. 1/e M. Ali Omar, Elementary Solid State Physics, 1999,

3. M.A. Wahab, Pearson India. Solid State Physics, 2011, Narosa Publications.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO1	3	2	0	3	3	3	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	2	3	2
CO ₄	3	2	0	2	3	2	0	2
CO5	3	2	0	2	3	2	0	2
	15	10	0	11	15	11	2	8
Scaled to 1, 2, 3	3	2	0	3	3	3	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH502B- Atomic & Molecular Spectroscopy

COURSE OUTCOMES:

CO1:Cog: U;*Explain* the atom through atomic spectra.

CO2:Cog: U; *Extend* their knowledge of bonding and anti bonding of MOs

CO3:Cog :Ap; *Develop* their knowledge about various spectra of molecules.

CO4:Cog: An; Analyze the Raman Spectroscopy and Electronic Spectroscopy of Molecules.

CO5:Cog: U, C;*Explain*Basic principles of NMR & ESR and *Discuss* Classical and quantum mechanical description

COURSE CODE	COURSE NAME	L	Т	Р	С
XPH502B	ATOMIC & MOLECULAR SPECTROSCOPY	3	1	0	4
		L	Т	Р	Η
		3	1	0	4
Unit 1 : Basic atomic	models				7+3
Optical spectrum of H quantum number - Spe –Orbital quantum num – The Correspondence Alkali atoms - Magne Spin-orbit splitting in t	Hydrogen atom - Bohr's Postulates – Quantitative co ectra of hydrogen-like atoms – Sommerfeld's extension ber –Lifting of orbital degeneracy - Limits of the Boh principle – Rydberg atoms –Lifting of orbital degeneration tic moment of orbital motion – Spin and magnetic no the Bohr model – Fine structure in Hydrogen atom	onclus on of r-Son racy i nome	ions the B nmerf n the nt of	–Prin ohr 1 feld t spec elect	ncipal model heory etra of ron –
Unit 2: Interactions v	vith external fields and many-electron atoms				8+3
Zeeman effect – Nor resonance and Optica principle – Angular m Emission line spectra	rmal and anomalous – Stark effect - Paschen-Ba l pumping – The spectrum of Helium – Electron omentum coupling – X-ray from outer shell & Bren - Fine structure of X-rays – Absorption spectra – Auge	ick ef repul isstra er effe	ffect sion hlung ect	– D and spe	ouble Pauli ctra –
Unit 3: Rotational Sp	ectroscopy				10+3

The rotation of molecules - Rotational spectra -	Diatomic molec	<mark>ules</mark> – Rigid m	olecule –
Intensities of spectral line – isotopic substitution – N	on-rigid rotator	- Polyatomic m	olecules –
Techniques and Instrumentation – Chemical analysis			
Unit 4: Vibrational Spectroscopy			10+3
Vibrating diatomic molecule - Diatomic vibrating r	otator –Vibratio	n – Rotation sp	ectrum of
Carbon Monoxide – Breakdown of the Born-Opp	enheimer appro	ximation – Vil	oration of
Polyatomic molecules – Analysis by infra-red technique	ies - Technique	s and Instrument	tation
Unit 5: Raman Spectroscopy			10+3
Classical theory & Quantum theory of Raman scat	tering – Pure ro	tational Raman	spectra –
Vibrational Raman spectra – Polarization of Lig	tht and the Ra	aman effect –	Structure
determination from Raman and IR spectroscopy - Te	chniques and In-	strumentation –	Near IR –
FT Raman spectroscopy.			
	LECTURE	TUTORIAL	TOTAL
	45	15	60
TEXT BOOKS			
1. Haken, Wolf, Springer-Verlag, Atomic and Quantum Ph	ysics, Second editio	n (1987).	
2. Colin Banwell& Elaine McCash, Fundame	entals of Moleo	cular spectrosc	opy, Tata
McGraw-Hill Publishing Company, Fourth edi	tion (2005).		
REFERENCES			

- 1. Arthur Beiser, Concepts of Modern Physics, Tata McGraw Hill Publishing company, Sixth edition (2005).
 2. Araldaes, Molecular structure and Spectroscopy, Proprior Hell of India, Eirst edition
- 2. Aruldhas, *Molecular structure and Spectroscopy*, Prentice-Hall of India, First edition (2004).

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO1	3	2	0	3	2	1	0	1
CO ₂	3	2	0	3	2	1	0	1
CO ₃	3	2	0	3	2	1	3	2
CO ₄	3	2	0	3	2	1	0	2
CO5	3	2	0	3	2	1	0	2
	15	10	0	15	10	5	2	8
Scaled to 1, 2, 3	3	2	0	3	2	1	1	2

Mapping with Programme Outcomes

XPH503A NUCLEAR AND PARTICLE PHYSICS

COURSE OUTCOMES:

CO1:Cog: R,U;*Recall* the general properties of nucleus and *Discuss* the angular momentum and magnetic moment.

CO2:Cog: R, U,E;*List* and *Explain*the various models of nuclear

CO3:Cog :U, An; *Distinguish* and *Demonstrate* the various radioactivity decay of nucleus

CO4:Cog: Ap U, C; *Classify* the type of reaction and *discuss* the concepts

CO5:Cog: U;*Classify* the elementary particles

COURSE CODE	COURSE NA	ME	L	Т	Р	С		
XPH503A	NUCLEAR AND PARTI	CLE PHYSICS	3	1	0	4		
			L	Т	Р	Η		
			3	1	0	4		
UNIT - I General Properties of Nuclei								
Constituents of nucleu	is and their Intrinsic properties,	quantitative facts a	about siz	e, ma	ass, c	harge		
density (matter energy	y), binding energy, average bin	nding energy and	its varia	tion	with	mass		
number curve, N/A plo	ot, angular momentum, parity, m	agnetic moment, e	lectric m	lomei	nts ni	ıclear		
excites states.								
UNIT - II Nuclea	r Models					8+3		
Liquid drop model ap	proach – Semiempirical mass fo	ormula and signific	ance of	vario	us te	rms –		
condition of nuclear st	tability – Two nucleon separatio	on energies – Ferm	i gas mo	del (degei	nerate		
fermion gas, nuclear	symmetry potential in Fermi g	as) evidence for n	uclear s	hell s	struct	ure –		
nuclear magic number	rs - basic assumption of shell 1	model – concept o	of mean	field	- res	sidual		
Interaction – concept of	of huclear force.					10.2		
	Cuvity decay		6 4	<u> </u>		10+3		
Alpha decay: basics o	of α -decay processes, theory of	α -emission, Gamo	w factor	, Gei	ger I	Nuttal		
law, α -decay spectros	copy - β-decay: energy kinemati	cs for β -decay, pos	Sitron em	115510	n, ele	ectron		
capture, neutrino nyp	otnesis – Gamma decay: Gam	ma rays emission	ækinem	latics	, m	ternal		
UNIT - IV Nuclea	r Reactions					10+3		
Types of reactions –	conservation laws – kinematic	cs of reaction – C)-value -	- rea	ction	rate.		
reaction cross section	- Concept of compound and dire	ect reaction, resona	nce reac	tion -	- Cot	ılomb		
scattering (Rutherford	scattering).							
UNIT - V Particle	e physics					10+3		
Particle interactions:	basic features, types of parti-	cles and its fami	lies - S	ymm	etries	s and		
Conservation Laws: en	nergy and momentum, angular r	nomentum, parity,	baryon 1	numb	er, L	epton		
number, Isospin, Stran	ngeness and charm, concept of	quark model, colo	or quantu	ım nı	ımbe	er and		
gluons.								
		LECTURE	FUTOR	IAL	TO	TAL		
		45	15			60		
TEXT BOOKS								
1. Kenneth S. Krane,	Introductory nuclear physics, wil	ey India Pt. Ltd., 2	008.					
2. Bernard L. Cohen,	Concepts of nuclear physics, Ta	ta Mcgraw Hill, 19	98.					
22								

3. R.A. Dulap, Introduction to the physics of nuclei & particles, Thomson Asia, 2004.

REFERENCES

- 1. D. Griffith, Introduction to Elementary Particles, Hohn Wiley & Sons.
- 2. F.Halzen and A.D. Martin, Quarks and Leptons, Wiley India, New Delhi.
- 3. J.M. Blatt & V.F. Weisskopf, Theoretical Nuclear Physics, (Dover Pub. Inc., 1991)

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO 1	3	2	0	3	3	1	0	1
CO ₂	3	2	0	2	0	2	0	1
CO ₃	3	2	0	2	0	0	3	2
CO ₄	3	2	0	0	3	0	0	2
CO ₅	3	2	0	0	2	1	0	2
	15	10	0	7	8	4	2	8
Scaled to 1, 2, 3	3	2	0	2	2	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH503B- PRINCIPLE OF MODERN PHYSICS

COURSE OUTCOMES:

CO1:Cog: R,Ap, C;*Recall*Planck's constant and knowledge about photons and *Solve* the problems of stability and instability of atoms.

CO2:Cog: U,E;*Infer*theuncertainty principle and*Estimate* minimum energy of a confined particle using uncertainty principle

CO3:Cog :U, E; *Explain* particle in box, energy eigenvalues and eigenfunctions, normalization and tunneling across a rectangular potential barrier.

CO4:Cog: R,U;*Recall*Size and structure of atomic nucleus and *Demonstrate*nuclear forceand binding energy

CO5:Cog:R,U, E;*Define* radioactive decay, Mean life and half-life and *Explain* γ decay, β decay and α emission

•					
COURSE CODE	COURSE NAME	L	Т	Р	С
XPH503B	PRINCIPLE OF MODERN PHYSICS	3	1	0	4
		L	Т	Р	Η
		3	1	0	4
UNIT – I					7+3
Planck's quantum, Pla	nck's constant and light as a collection of photons; Pho	otoele	ectric	effe	ct and
Compton scattering.	De Broglie wavelength and matter waves;	, Da	avisso	on-G	ermer
experiment.Problems	with Rutherford model- instability of atoms and obs	servat	tion of	of di	screte
atomic spectra; Bohr's	quantization rule and atomic stability.				
UNIT – II					8+3
Position measurement	t- gamma ray microscope thought experiment; Wa	ave-p	articl	e du	iality,
Heisenberg uncertainty	y principle- impossibility of a particle following a tr	ajecto	ory; l	Estin	nating
minimum energy of a	a confined particle using uncertainty principle; Ener	rgy-ti	me u	incer	tainty
principle.					_

UNIT – III			10+3				
One dimensional infinitely rigid box- energy eigen	values and eiger	functions, norn	nalization;				
Quantum dot as an example; Quantum mechanical scattering and tunneling in one dimension -							
across a step potential and across a rectangular potential	al barrier.						
UNIT – IV			10+3				
Size and structure of atomic nucleus and its relation	n with atomic w	eight; Impossibi	lity of an				
electron being in nucleus as a consequence of the unc	ertainty principle	e. Nature of nucl	lear force,				
NZ graph, semi-empirical mass formula and binding en	nergy						
UNIT –V			10+3				
Radioactivity: stability of nucleus; Law of radioactive	decay; Mean life	and half-life; -r	ayγ decay				
- energy released, spectrum and Pauli's prediction of ne	eutrino; β decay;	α emission.					
	LECTURE	TUTORIAL	TOTAL				
	45	15	60				
TEXT BOOKS							
1. J.R.Taylor, C.D.Zafiratos, M.A.Dubson, Concepts	of Modern Phys	ics, Arthur Bei	ser, 2009,				
McGraw-Hill Modern Physics, 2009, PHI Learning							
REFERENCES							
1. Thomas A. Moore, Six Ideas that Shaped Physics: Pa	article Behave lik	e Waves, 2003,					

- 2. E.H. Wichman, McGraw Hill Quantum Physics, Berkeley Physics, Vol.4. 2008, Tata McGraw-Hill Co.
- 3. R.A. Serway, C.J. Moses, and C.A.Moyer, Modern Physics, 2005, Cengage Learning

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO 1	3	2	0	3	3	1	0	1
CO ₂	3	2	0	3	2	2	0	1
CO3	3	1	0	2	2	0	3	2
CO ₄	3	1	0	0	2	0	0	2
CO ₅	3	2	0	0	2	0	0	2
	15	8	0	8	11	3	2	8
Scaled to 1, 2, 3	3	2	0	2	3	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH504A MICROPROCESSOR AND C PROGRAMMING

COURSE OUTCOMES:

CO1: Cog: U; *Explain* the basic concepts of digital computer, evolution of microprocessors.

- CO2: Cog Ap; *Develop* their knowledge about the architecture and instruction set of an eight bit 8085 microprocessor.
- CO3: Cog: Ap; Organize assembly language to write programs for an 8085 microprocessor.
- CO4: Cog:U;Summarize Structure of C language, operators and library function
- CO5: Cog: Ap;*Utilize*various input, out statement, loop statements, while do else statements and basic functions for programme

· COURSE CODE	COURSE NAME	L	Т	Р	С					
XPH504A	MICROPROCESSOR AND C PROGRAMMING	3	1	0	4					
		L	Т	Р	Н					
		3	1	0	4					
Unit 1 BASICS OF D	IGITAL COMPUTER			9	9+3					
Basic components of a digital computer - Evolution of microprocessors - Important INTEL										
microprocessors - Bu	ses - Hardware, Software and Firmware - Men	nory -	Semi	cond	luctor					
memories - RAM,ROI	M - Flash memory.									
Unit 2 INTEL 8085 A	AND ITS ARCHITECTURE			9	9+3					
INTEL 8085 - Pin Dia	gram - Architecture - Various registers - Status Flag	s - Inte	rrupt	s and	their					
order of priority - Add	ressing modes - Direct, Register, Register indirect, I	mmedi	ate ar	nd im	plicit					
addressing - Instruction	on set - Data transfer group - Arithmetic Group - L	ogical	group) - B	ranch					
control group and stac	k and I/O- Machine control group.									
Unit 3 ASSEMBLY I	LANGUAGE PROGRAMMING			9	+3					
Addition - Subtraction	n - Multiplication -Division of two 8- bit numbers	- Find	ling t	he la	argest					
number in a data array	y - Finding the smallest number in a data array-Arran	nging a	list o	f nur	nbers					
in ascending or descer	ding order.									
Unit 4 Introduction t	o C			9	9+3					
Structure of 'C' – Fun	damentals of C – Character set – identifiers and key	words -	- data	type	es					
constants – variables –	- declarations – expressions – symbolic constants – a	rithmet	ic ope	erato	rs-					
Relational, Logical an	d assignment operators, Unary, Bitwise and Ternary	operato	ors –							
conditional operators -	- I/O function – library function.									
Unit 5 Preliminaries	and Functions		. 1	9	9+3					
Data input and output	- getchar, putchar, scant, printi, gets, puts functions	-Con	trol s	tatem	ients-					
While, do While, io	r nested loops, II else, switch, break, continue and	i goto s	tatem	ients.						
Basic functions – Re	richles, Static Variables, Decurrican	brage c	lass-	auto	matic					
variables- External va	Hables- Static Variables- Recursion.	ΙΤΟΡΙ	TAT	то	тат					
		15		10	60					
TEXT BOOKS	T	15			00					
1. B.Ram. Fundamer	tals of Microprocessors and Microcomputers. Dhan	nat Rai	publ	icatio	on pr.					
Ltd., New Delhi		P ••• - •••	P		, p.,					
2. Ramesh S.Goanka	r, Microprocessor Architecture, Programming and	Applica	ations	s wit	h the					
8085, Penram Inte	rnational Publishing (India) Pvt. Ltd.	11								
3. Kenneth J.Ayala,	The 8051 microcontroller Architecture, Programm	ing and	ł app	licati	ions',					
second edition, Per	nram international.									
REFERENCES										
1. Yn-cheng Liu, G	lenn A. Gibson, "Microcomputer systems: The	8086 /	808	88 Fa	amily					
architecture, Progr	amming and Design", second edition, Prentice Hall of	of India	, 200	6.						
2. Douglas V. " Mic	roprocessors and Interfacing : Programming and Ha	ardware	", Ha	ıll, se	econd					
edition, Tata McC	braw Hill,2006.									
3. A.K.Ray& K.M I	Bhurchandi, "Advanced Microprocessor and Perip	herals	– Ar	chite	cture,					
Programming and	Interfacing", Tata McGraw Hill , 2006.		-	~						
4. Mohamed Ali Ma	izidi, Janice GillispieMazidi, "The 8051 microcon	troller	and	embe	edded					
systems using Ass	embly and C", second edition, Pearson education /	Prentic	e hal	l of]	India,					
2007.		ת ווידד	1 0	T . •						
5. Venugopal, K.R. A	And Sudep, R.P.Programming with C, Tata McGraw	Hill Pu	b. Co	o. Ltd	l .					
	36									
6. E. Balagurusamy, Programming in C, Tata McGraw Hill Pub. Co.(2008).

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO 1	3	2	0	3	3	3	0	1
CO ₂	3	2	0	3	2	2	0	1
CO ₃	3	2	0	3	2	0	3	2
CO ₄	3	2	0	3	2	0	0	2
CO ₅	3	2	0	3	2	1	0	2
	15	10	0	15	11	6	2	8
Scaled to 1, 2, 3	3	2	0	3	3	2	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COUDSE CODE	SLID IECT NAME			Cat	egory
COURSE CODE	SUBJECT NAME	L	Т	P	CREDITS
XPH504B	MICROPROCESSOR AND	3	1	0	4
	MICROCONTROLLER				

COURSE OUTCOMES:

On the successful completion of the course, students will be able to

		Domain	Level
CO1	To study the basic concepts of digit al computer, evolutes ion microprocessors, semiconductor memories RAM and ROM	Cog	Understadning
CO ₂	To study the architecture and instruction set of an eight bit 8085 microprocessor	Cog	Remebering
CO ₃	To write assembly language programs for an 8085 microprocessor.	Cog	Evaluating
CO ₄	To study Structure of C language, operators, library function	Cog	Understanding
CO ₅	To study various input and out statement loop statements while do else statements	Cog	Analyzing

SYLLABUS:

UNIT I	BASICS OF DIGITAL COMPUTER Basic components of a digital computer - Evolution of microprocessors - Important INTEL microprocessors - Buses - Hardware, Software and Firmware - Memory - Semiconductor memories - RAM,ROM - Flash memory.	9
UNIT II	INTEL 8085 AND ITS ARCHITECTURE INTEL 8085 - Pin Diagram - Architecture - Various registers - Status Flags - Interrupts and their order of priority - Addressing modes - Direct ,Register, Register indirect, Immediate and implicit	9

UNIT III	INSTRUCTION SET Instruction set - Data transfer group - Arithmetic Group - Logical group - Branch control group and stack and I/O- Machine control group.	9
UNIT IV	ASSEMBLY LANGUAGE PROGRAMMING Addition - Subtraction - Multiplication -Division of two 8- bit numbers - Finding the largest number in a data array - Finding the smallest number in a data array-Arranging a list of numbers in ascending or descending order.	9
UNIT V	MICROCONTROLLERS Architecture of 8051 Microcontroller – signals – I/O ports – memory – counters and timers – serial data I/O – interrupts Interfacing -keyboard, LCD, ADC & DAC	9

Books for Study:

Fundamentals of Microprocessors and Microcomputers- B.Ram.

Microprocessor Architecture, Programming and Applications with the 8085, Ramesh. S.Goankar, Penram International Publishing (India) Pvt. Ltd.

'The 8051 microcontroller Architecture, Programming and applications'Kenneth J.Ayala, second edition .Penram international.

Books for Reference:

"Microcomputer systems: The 8086 / 8088 Family architecture, Yn-cheng Liu, Glenn A. Gibson, Programming and Design", second edition, Prentice Hall of India, 2006.

"Microprocessors and Interfacing : Programming and Hardware", Douglas V.Hall, second edition , Tata Mc Graw Hill ,2006.

"Advanced Microprocessor and Peripherals - Architecture, A.K.Ray & K.M Bhurchandi, Programming and Interfacing", Tata Mc Graw Hill, 2006.

"The 8051 microcontroller and embedded systems using Assembly and C",

Mohamed Ali Mazidi, Janice Gillispie Mazidi, second edition, Pearson education /Prentice hall of India, 2007.

	IVIä	ipping w	un Prog	gramme (Jutcome	S		
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO 1	2	3	0	2	3	2	0	1
CO ₂	2	2	0	2	2	1	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	0	2	0	0	2
CO ₅	2	0	0	0	2	0	0	2
	10	9	0	6	11	3	2	8
Scaled to 1, 2, 3	2	2	0	2	3	1	1	2

Manning with Programma Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH505		0	0	3	2
	PHYSICS PRACTICAL –V A	L	Т	Р	Η
		0	0	3	3
COURSE OU	JTCOMES:				
CO1: Cog: A	ana; Aff: Rec.; Psy: Mech; Use laboratory techn	niques s	such as	accui	acy of
measu	rements and data analysis.				
CO2: Cog: U	; Aff: Rec.; Psy: Set, GR; <i>Explain theconcepts</i>	that are	learnt	in the	lecture
session	is and <i>follow</i> hands-on learning experience in the la	boratory	/ sessio	ns.	1
CO3: Cog: R;	Aff: Rec.; Psy: Mech; Gain <i>knowledge</i> in the sci	entific i	nethod	s and <i>i</i>	aentify
CO4	Cost Ap: Aff: Doc OrgiDay: Moch. Marin	Jatoon	1 0000	nlata	all tha
CO4.	Cog. Ap, All. Rec, Olg, rsy. Mech, Manuple	uuuean		piele	all the
LIST OF EX	PERIMENTS				
<u></u>					
1. Spectrome	ter – Grating –normal incidence				
2. Field along	g the axis of a coil- H determination.				
3. Demorgan	's theorem verification using IC gates.				
4. Voltage D	oublers and Tripler.				
5. Deflection	magnetometer – M & H.				
6. Air wedge	– Determine the thickness of a thin wire.				
7. Carey Fost	ter Bridge – Specific Resistance.				
8. Potentiom	eter – E.M.F of a Thermocouple.				
9. Spectrome	ter – Refractive index of the prism.				
10. Hall adder	and full adder using basic logic gates IC's.				
TEXT BOOKS	5				
1. BSc Practic	al Physics, C. L. Arora, (S. Chand)				
2. An Advance	ed Course in Practical Physics, D. Chattopadhyay and	nd P. C.	Rakshi	it, (Nev	V
Central Boo	ok Agency)				
3. A Text Boo	k of Advanced Practical Physics, S. Ghosh, (New C	entral E	Book Ag	gency)	7
Semester 1	- Physics (Honours) Theory Paper.				
4. Shukla R. K	L and Anchal Srivastava, Practical Physics, New Ag	ge Interr	national	(P) Lt	d,
Publishers,	2006.				
5. Arora C. L.	B.Sc Practical Physics, S. Chand and Company Ltd	d, 2007			
REFERENC			• •		
1. Squires G. I	, Practical Physics, 4 th Edition, Cambridge Unive	ersity Pr	ess, 200)].	x 7·1
2. Halliday D	., Resnick R. and Walker J., Fundamentals of Physic	cs, 6th F	dition,	John	wiley
and Sons, 2	WUI.	ion M-	Cacre	ם ווז -	alı
5. Jenkins F.A	. and white H.E., Fundamentals of Optics, 4th Edit	ion, MC	Graw		OK
Company, A	2007. n B. Sa. Drootical Dhysics, 1st Edition S. Chand ar	d Com		007	
5 Renenson V	u, D. Sc., Flactical Flipsics, 18t Euluoli, S. Clialid al Walter and Horst Stocker Handbook of Physics Sr	nu Comp ringer	2002 2002	007.	
5. Denenson,	mater, and morst stocker, manufolds of mysics, Sp	, inger,	2002.		

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO1	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO3	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
	12	4		7	4	6	11	8
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH506		0	0	3	2
	PHYSICS PRACTICAL –VB	L	Т	Р	Н
		0	0	3	3
COURSE OU	TCOMES:				
CO1: Cog: An	a; Aff: Rec.; Psy: Mech; Use laboratory techniques	such as	accura	cy of	
measu	rements and data analysis.			•	
CO2: Cog: U;	Aff: Rec.; Psy: Set, GR; <i>Explain theconcepts</i> that	are lear	nt in th	e lectur	re
session	s and <i>follow</i> hands-on learning experience in the la	boratory	v sessio	ns.	
CO3: Cog: R;	Aff: Rec.; Psy: Mech; Gain knowledge in the scient	tific met	thods a	nd <i>iden</i>	ntify
the pro	cess of measuring different Physical variables				
CO4: Cog: Ap	; Aff: Rec, Org; Psy: Mech; Manipulate and comple	te all th	e exper	iments	with
excelle	nt <i>application</i> knowledge.				
LIST OF EX	PERIMENTS				
1. Operationa	ll Amplifier – Differentiator, Integrator.				
2. Tan C – de	etermination of M & BH.				
3. Focal leng	th – Concave lens – Combination method (Two type	es)			
4. Half subtra	actor and full subtractor using basic logic gates.				
5. FET Chara	cteristics and constants determination.				
6. B.G – Figu	re of Merit – Voltage and Current Sensitiveness.				
7. Newton's r	ings – Determination of radius of curvature of the ler	ns R.			
8. Half Adder	;, Full Adder using NAND/NOR gate				
9. Spectrome	ter – i-d curve.				
10. Constructi	on Dual power supply 5-0-5 or 9-0-9v.				
TEXT BOOKS					
1. BSc Practi	cal Physics, C. L. Arora, (S. Chand)	1.5.0			
2. An Advan	ced Course in Practical Physics, D. Chattopadhyay a	and P. C	C. Raksl	nit, (Ne	ew
Central Bo	ok Agency)	~ .			
3. A Text Bo	ok of Advanced Practical Physics, S. Ghosh, (New	Central	Book A	Agency)7
Semester l	- Physics (Honours) Theory Paper.	- .		1 (D) 7	. 1
4. Shukla R.	K. and Anchal Srivastava, Practical Physics, New A	ge Inter	rnationa	al (P) L	Ltd,
Publishers	, 2006.	.1.000	-		
5. Arora C. L	., B.Sc Practical Physics, S. Chand and Company L	.td, 200	/.		

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

				0				
COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
	12	4		7	4	6	11	8
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH601 RENEWABLE ENERGY

COURSE OUTCOMES:

CO1:Cog: Ap;*Identify* the various alternate Sources of energy.

CO2:Cog:U;*Explain*Solar energy and applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell absorption air conditioning.

CO3:Cog :U;*Demonstrate* the fundamentals of wind energy.

CO4:Cog: C; DiscussOcean Energy and Tide energy technologies

CO5:Cog: U, R;*Explain*Geothermal Energy, Geothermal resources, geothermal technologies and Hydro energy, hydropower technologies and *Relate* the environmental impact.

COURSE CODE	COURSE NAME	L	Т	Р	С		
XPH601	RENEWABLE ENERGY	0	0	4	2		
		0	0	4	4		
UNIT - I Alternate Sources of energy							
Fossil fuels and Nuclear	energy, their limitation, need of renewable energy	gy, no	on-co	nven	tional		
energy sources. An over	view of developments in Offshore Wind Energy	Tida	l Ene	ergy,	Wav		
energy systems, Ocean Thermal Energy conversion, solar energy, biomass, biochemi							
conversion, biogas genera	tion, geothermal energy tidal energy, Hydroelectric	city.					
UNIT - II Solar ener	gy				8+3		

Solar energy, its importance, storage of solar energy, solar pond, non convective solar pond, applications of solar pond and solar energy, solar water heater, flat plate collector, solar distillation, solar cooker, solar green houses, solar cell absorption air conditioning. Need and characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, and sun tracking systems.

UNIT - III Wind Energy

10+3

Fundamentals of wind energy, wind Turbines and different electrical machines in wind turbines, Power electronic interfaces and grid interconnection topologies.

UNIT - IV Ocean Energy

<u>10</u>+3

10+3

Ocean Energy Potential against wind and solar, wave characteristics and statistics, wave energy devices. Tide characteristics and Statistics, Tide energy technologies, Ocean Thermal energy, Osmotic power, ocean Bio-mass

UNIT -	V	Geo	thermal	and	Hydro	Energy	
A 1		-	2				

Geothermal Energy: Geothermal resources, geothermal technologies. Hydro energy: Hydropower resources, hydropower technologies, environmental impact of hydro power sources.

LECTURE	TUTORIAL	TOTAL
45	15	60

TEXT BOOKS

1. G.D.Rai,Non conventional energy sources, Khanna publisher, New Delhi.

- 2. M.P. Agarwal, Solar energy, S Chand and Co. Ltd.
- 3. Suhas P Sukhative, Solar energy, Tata McGraw Hill Publishing Company Ltd.

REFERENCES

1. Godfrey Boyle, Renewable energy, Power for a sustainable future, Oxford University Press, in association with The open University (2004).

2. Dr. P, Jayakumar, Solar energy Resource Assessment Handbook, (2009)

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈				
CO 1	3	2	0	3	2	2	0	1				
CO ₂	2	1	0	3	2	1	0	1				
CO ₃	2	1	0	3	2	1	3	2				
CO ₄	2	1	0	3	2	0	0	2				
CO ₅	2	1	0	3	2	0	0	2				
	11	6	0	15	10	4	2	8				
Scaled to 1, 2, 3	3	2	0	3	2	1	1	2				

Mapping with Programme Outcomes

XPH602A- QUANTUM MECHANICS

COURSE OUTCOMES:

CO1:Cog: U,E;Recall the properties of wave function and Interpret the wave function probability and probability current densities in three dimensions.

CO2:Cog: U,E;*Explain*the time dependent Schrodinger equation and its *influence*.

CO3:Cog : Ap;*Identify* the continuity of wave function, boundary condition and emergence of energy levelsand *Applied* in square well potential.

CO4:Cog: C; Discuss thetime independent Schrodinger equation in spherical polar coordinates and Orbital angular momentum quantum numbers 1 and m; s, p, d,.. shell.

CO5:Cog: U;Explainelectron spin and spin angular momentum and Electron Magnetic Moment and Magnetic Energy.

COURSE CODE	COURSE NA	ME	L	Т	Р	С					
XPH602A	QUANTUM MEC	HANICS	3	1	0	4					
			L	Т	P	Η					
			3	1	0	4					
UNIT - I Time depe	ndent Schrodinger Equation					7+3					
Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of											
wave function – Inter	pretation of wave function prob	ability and probab	oility curr	ent d	ensit	ies in					
three dimensions – Co	onditions for Physical Acceptab	ility of wave fund	ctions $-N$	Jorma	alizat	tion –					
Linearity and Super	position Principles – Eigenva	alues and Eigent	functions	– F	Positi	on –					
momentum & Energy	operators; Expectation values of	f position and mor	nentum –	Wav	e fur	nction					
of a free particle.											
UNIT - II Time in	ndependent Schrodinger Equa	tion				8+3					
Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wave function											
as a linear combinati	on of energy eigenfunctions -	General solution	n of the	time	depe	ndent					
Schrodinger equation	in terms of linear combination	s of stationary sta	ites – Ap	plicat	tion 1	to the					
spread of Gaussian w	ave packet for a free particle in	one dimension –	wave pa	ckets	– Fe	ourier					
transforms and momen	ntum space wave function – posi	tion –momentum	uncertain	ty pri	ncipl	e.					
UNIT - III Genera	al discussion of bound states in	an arbitrary pot	ential			10+3					
Continuity of wave f	function, boundary condition an	nd emergence of	discrete e	energ	y lev	vels –					
application to one –	dimensional problem – square	well potential, -	Quantum	n meo	chani	ics of					
simple harmonic oscil	lator –energy levels and energy e	eigenfunctions usi	ng – Frob	enius	met	hod.					
UNIT - IV Quanti	um theory of hydrogen-like ato	oms		•		10+3					
Time independent Sc	hrodinger equation in spherical	polar coordinates	– separat	lon of	t var	ables					
for the second order	partial differential equation – a	ingular momentur	n operato	r and	l qua	intum					
numbers – Radial way	refunctions from Frobenius meth	nod – Orbital angi	ilar mom	entun	n qua	antum					
numbers I and m; s, p,	d, shell (idea only).										
UNIT - V Atoms	in Electric and Magnetic Field	ls				10+3					
Electron Angular mon	nentum – space quantization – E	lectron spin and s	pin angul	ar mo	omen	tum -					
Larmor's Theorem -	Spin Magnetic Moment - Ste	rn-Gerlach Exper	iment – Z	Zeem	an E	Effect:					
Electron Magnetic Mo	ment and Magnetic Energy, Gyr	romagnetic Ratio a	and Bohr	Magr	eton						
		LECTURE	TUTOR	[AL	TO	TAL					
	/3										

	45	15	60
TEXT BOOKS			

1.A Text Book of Quantum Mechanics, P.M. Mathews & K. Venkatesan, 2nd Ed., 2010, McGraw Hill.

- 2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEdn., 2002, Wiley.
- 3. Quantum Mechanics, G. Aruldhas, 2ndEdn 2002, PHI Learning of India.

REFERENCES

- 1. Quantum Mechanics, Leoard I. Schiff, 3rdEdn, 2010, Tata McGraw Hill.
- 2. Quantum Mechanics, Bruce Cameron Reed, 2008, Jone and Bartlett Learning.
- 3. Quantum Mechanics for Scientists & Engineers, DA.B. Miller, 2008, Cambridge University Press.

COs	PO 1	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO1	3	2	0	2	3	1	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	0	3	2
CO ₄	3	2	0	2	3	0	0	2
CO ₅	3	2	0	0	0	0	0	2
	15	10	0	8	12	3	2	8
Scaled to 1, 2, 3	3	2	0	2	3	1	1	2

Mapping with Programme Outcomes

XPH602B- MATERIAL SCIENCE

Cours On th to	se Outcome: e successful completion of the course, students will be able	Domain & Level
CO1:	Recall and distinguish various crystal structures.	Cognitive (Remember, Analyze)
CO2:	Know about the impacts of defects at the atomic and microstructure scales.	Cognitive (Remember, Understand)
CO3:	Describe the various Ceramic, Electrical & Electronic Materials.	Cognitive (Remember, Analyze)
CO4:	Describe the basics of mechanical properties of material and identify how they can be tested.	Cognitive (Remember, Analyze)
CO5:	Recognize and Describe various Magnetic Materials and Nano Materials.	Cognitive (Remember)

SU	BCODE		MATERIALS	SCIENCE	L	, T P		C
XP	H602B				3	1	0 D	4
							P 0	H 4
UN	IT - I	Cryst	al Structure		3	9+3	U	4
Atc	omic structure	and in	nter-atomic bonding: Str	ucture of crystalline soli	ds: La	ttices.	unit c	ells:
Cry	stal systems,	Brava	ais lattices; Indexing of	directions and planes,	notati	ons, İn	ter-pl	anar
spa	cings and ang	les, co-	ordination number, pack	ing factors.			-	
UN	$\mathbf{IT} - \mathbf{II}$	Defec	ets in Crystals			9+3		
Poi def	nt defects; Di ects. stacking	islocati faults.	ons, Types of dislocation twins, grain boundaries.	ns, Burgers vector and it	s repre	sentatio	on; Pl	anar
UN	IT - III	Cera	mic, Electrical & Electro	onic Materials		9+3		
Cer	ramic Materia	ls:Intro	duction, ceramic structu	res, silicate structures, p	process	ing of	cerar	nics;
Pro	perties, glasse	es; Con	nposite Materials- Introd	uction, classification, con	icrete, 1	netal-r	natrix	and
cera	amic –matri	x con	nposites.Electrical& Ele	ectronic Properties of	Mate	rials:	Elect	rical
Col	nductivity, El	lectroni	c and Ionic Conductivi	ity, Intrinsic and Extrin	sic Se	mi cor	nducti	vity,
Sen	niconductor L	evices	, Dielectric Properties, Pi	ezo-electricity.		0.2		
UN	(11 – 1V	Mech	anical Properties of Ma	iterials		9+3		
	ncepts of stre	ss and	strain, Stress-Strain diag	rams; Properties obtained	d from	the Te	ensile	test;
Ela	stic deformat	10n, P	lastic deformation. Imp	act Properties, Strain ra	ate effe	ects an	id Im	pact
UN		Magr	netic Materialsand Nanc	Materials		9+3		
Ma	anetic Materi	ale. Int	coduction Magnetic field	s or quantities types of m	agneti	m cla	ecific	ation
of	magnetic ma	terials.	soft magnetic material	s. H magnetic materials	S. Ferri	tes. Fe	erro.	Para
Ma	gnetic mater	ials.Na	noMaterials:Introduction	– Nano material pro-	eparatio	on, pu	irifica	tion,
sint	tering nano pa	rticles	of Alumina and Zirconia	a, Silicon carbide, nanoop	o, nano	-magne	etic, n	ano-
elec	ctronic, and ot	her im	portant nano materials.					
			LECTURE	TUTORIAL		TOT	AL	
			45	15		60		
Tey	xt Books:							
1	Askeland D. Learning Pul	R.,& P blishers	. P. Fullay (2007), The So	cience and Engineering of	Mater	ials – 7	thCen	gage
2	William D. C	Calliste	r, Jr (2008), Callister''s M	Iaterials Science and Engi	ineerin	g, (Add	pted	by
	R. Balasubra	mania	n) Wiley-Eastern	8		5, (I ····	- 5
Ref	ference books	5:						
1	A.S. Edelste	in and I	R.C. CammarataEd.(1998 Of Physics Publishing III	3), Nano Materials: Synthor	esis, Pr	opertie	s and	
2	Raghavan V	(2007)	, Materials Science and E	Engineering - A First Cour	rse, Pre	ntice H	Iall, Iı	ndia
3	James E She	okelfe	rd (1006) Introduction to	Materials Science for En	ainaar	Drant	ico U	<u></u>
5	James r. Slie India	ICKC110		intaterials science for En	gneers	, rieill	псе П	a11,

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	2	0	2	3	1	0	1
CO ₂	3	2	0	2	3	2	0	1
CO ₃	3	2	0	2	3	0	3	2
CO ₄	3	2	0	2	3	0	0	2
CO5	3	2	0	0	0	0	0	2
	15	10	0	8	12	3	2	8
Scaled to 1, 2, 3	3	2	0	2	3	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

XPH603A MICRO ELECTRO MECHANICAL SYSTEM

COURSE OUTCOMES

CO1:Cog: U; *Demonstrate* architecture of embedded system, classification and applications.

CO2:Cog: U,Ap ,E;*Explain* architecture of 8051, overview of 8051 familyand *apply* 8051 assembly language programme.

CO3:Cog : U;*Summarize* addressing modes, assembly language instructions, arithmetic &logic instructions for 8051.

CO4:Cog: Ap;*Utilize*Assembly Language and *Develop*I/O port program for 8051.

CO5:Cog: U, An; *Examine* the structure of embedded program and *Show* the embedded system design.

COURSE CODE	COURSE NAME	L	Т	Р	С				
XPH603A	MICRO ELECTRO MECHANICAL SYSTEM 3								
		Р	Η						
	3 1								
UNIT - I INTRODUCTION									
history of MEMS, ma	arket for MEMS, overview of MEMS processes, pro	operti	es of	silic	con, a				
sample MEMS proce	ss. Basics of Microtechnology: definitions and ter	minol	ogy,	a sa	ample				
process, lithography	and etching. MEMS Biosensors: Bio Flow Senso	rs, N	IEMS	S In	nages.				
Introduction to MEMS	S Pro design software.								
UNIT - II MICR	OMACHINING				8+3				
Subtractive processes	(wet and dry etching), additive processes (eva	porati	on, s	sputt	ering,				
epitaxial growth). Fur	ndamental Devices and Processes: basic mechanics a	ind el	ectro	statio	cs for				
MEMS, parallel plate	actuators, pull-in point, comb drives.								
UNIT - III FUND	AMENTAL DEVICES AND PROCESSES				10+3				
More electrostatic act	uators; MEMS foundries, Cronos MUMPs (multi us	ser M	EMS	pro	cess).				
MUMPs Multi User	MEMS Process: JDS Uniphase MUMPs processing s	seque	nce a	nd d	lesign				
rules. MUMPs and	SUMMIT: design rules; applications; micro hing	es ai	nd de	eploy	ment				
actuators.									
UNIT - IV CMOS	MEMS				10+3				

CMOS foundry processes, integrated IC/MEMS, MEMS postprocessing, application								
Cleanroom lab techniques: clean rooms, gowning procedures; safety, fire, toxicity; acids an								
bases; photolithography.								
UNIT – V SCALING LAWS AND MEMS ASSEMBLY 10+.								
Scaling Laws. Wireless MEMS: mechanical and electrical resonators, Q-factor, switches, filter								
Power for MEMS: thin film batteries, micro fuel cells, energy field								
MEMS Packaging and Assembly: microassembly: serial and parallel, deterministic an								
stochastic; microgrippers: HexSil process; packaging techniques. The Future of MEMS								
bioMEMS – neural implants, gene chips, diagnostic chips; MEMS in space; mechanical								
computers; invisible and ubiquitous computing.								
LECTURE TUTORIAL TOTA								

TEXT BOOKS

- 1. HSU, TAI RAN, Mems And Microsystems Design And Manufacture, Tata McGraw-Hill,2002.
- 2. Rai-Choudhury, Prosenjit; MEMS and MOEMS Technology and Applications SPIE 2000.

45

15

60

REFERENCES

- 1. Mohamed Goad-el-Hak, "MEMS: Introduction and Fundamentals", CRC Press edition 2005
- 2. Vijay K. Varadan, K. J. Vinoy, S. Gopalakrishnan, "Smart Material Systems and MEMS: Design and Development Methodologies".

Mapping with Programme Outcor	nes
-------------------------------	-----

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	2	3	0	3	3	2	0	1
CO ₂	2	2	0	2	2	1	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	1	2	0	0	2
CO ₅	2	0	0	0	2	0	0	2
	10	9	0	8	11	3	2	8
Scaled to 1, 2, 3	2	2	0	2	3	1	1	2

3 – Strong: 2 – Medium: 1 – Low

XPH603B - NUMERICAL METHODS IN PHYSICS

COURSE OUTCOMES:

CO1: Cog: E,Ap;*Identify* errors and *Measure* errors using General formula.

CO2: Cog: R,E;*Define* various iteration method and *Determine* the false position using these method.

CO3: Cog :R, Ap;*Find* the unequal intervals*Applying* various interpolation formula.

CO4: Cog: U, Ap, E;*Explain* numerical differentiation and integration and *Solve*problems by Newton's forward, trapezoidal, Simpson'srule.

CO5:Cog: U, AP;**Explain**nth order ordinary differential equations and **apply** the knowledge to Solve the differential equation.

COURSE CODE	COURSE NA	ME	L	Т	P	С
XPH603B	NUMERICAL METHOR	DS IN PHYSICS	3	1	0	4
			L	Т	Р	Н
			3	1	0	4
Unit I						7+3
Errors and the mea	surements General formula formula	or errors – Erro	ors of c	bserv	ation	and
measurement - Empire	rical formula – Graphical meth	od – Method of a	averages	– Le	ast s	quare
fitting – curve fitting –	- parabola, exponential.					
Unit II						8+3
Numerical solution of	algebraic and transcendental equ	ations The iteration	on metho	d – T	he m	ethod
of false position - N	ewton - Raphson method - Ce	onvergence and ra	ate of co	onverg	gence	e – C
program for finding	roots using Newton - Raphso	n method. Simult	aneous	linear	alge	ebraic
equations Gauss elim	nination method – Jordon's me	odification – Gau	iss – Se	idel	meth	od of
iteration.						
Unit III						10+3
Interpolation Linear	interpolation – Lagrange interp	olation Gregory	– Newto	on fo	rward	d and
backward interpolation	n formula – Central difference i	nterpolation formu	ıla – Ga	uss fo	rwar	d and
backward interpolatio	n formula – Divided difference	es – Properties –	Newtor	i's in	terpo	lation
formula for unequal in	itervals.					
Unit IV						10+3
Numerical differentiat	ion and integration, Newton's fo	orward and backwa	ard differ	ence	form	ula to
compute derivatives -	- Numerical integration: the tra	pezoidal rule, Sim	ipson's i	ule –	Exte	ended
Simpson's rule.					<u> </u>	10.0
Unit V	<u> </u>	NT.1 1 1	1:00			10+3
Numerical Solutions of	of ordinary differential equations	s Nth order ordina	ry differ		equa	ations
– Power series approx	imation – Pointwise method – S	olutions of Taylor	series –	Eule	r's m	ethod
- Improved Euler's r	nethod – Runge-Kutta method	- second and this	ra order	– Ki	inge-	Kutta
method for solving firs	st order differential equations.	LECTUDE	ΤΙΤΛΟ	TAT	то	тат
			<u>1010k</u> 15	IAL	10	/1AL 60
ΤΕΥΤ ΡΟΟΚς		43	15			00
1 S S Sastry Introdu	atory Mathada of Numerical and	lucia Prontico Un	llof			
India New Delbi (2	2003) 3rd Edition	lysis, Fiendlee, 11a				
2 M K Venketremen	Numerical methods for Physic	oto				
PEEPENCES	, Numerical methods for Thysici	1515.				
1 Numerical Method	ls in Science and Engineering	_ The National	Publishi		N M	ladras
(2001)	is in Science and Engineering		i uonsim	ig co	<i>.</i> , w	lauras
2 W H Press B P	Flannery S A Teukolsky W	T Vetterling Num	erical I	Recine	e i	n C
Cambridge Univers	sity (1996)			corp	5 II	
3. K.P.N. Murthy,Mo	nte Carlo : Basics ISRP, Kalpak	kam, 2000.				

Cos	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO 7	PO ₈
CO ₁	3	2	0	2	3	1	0	1
CO ₂	2	2	0	2	2	0	0	1
CO ₃	2	2	0	2	2	0	3	2
CO ₄	2	2	0	3	1	0	0	2
CO ₅	2	2	0	3	0	2	0	2
	11	10	0	12	6	3	2	8
Scaled to 1, 2, 3	3	2	0	3	2	1	1	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH604		0	0	3	2
	PHYSICS PRACTICAL –VI A	L	Т	Р	Н
		0	0	3	3

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; *Use* laboratory techniques such as accuracy of **measurements** and data **analysis**.

CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.

CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain *knowledge* in the scientific methods and *identify* the process of **measuring** different Physical variables

CO4: Cog: Ap; Aff: Rec, Org; Psy: Mech; *Manipulate* and *complete* all the experiments with excellent *application* knowledge

LIST OF EXPERIMENTS

- 1. NAND, NOR Universal gates Verification.
- 2. RC Coupled Transistor Amplifier Band width.
- 3. UJT relaxation oscillator.
- 4. RS- Filp Flop.
- 5. Operational amplifier Adder and subtractor.
- 6. Emitter Follower.
- 7. AstableMultivibrator.
- 8. Monostable multivibrator using transistor.
- 9. Microprocessor 8 bit addition and subtraction.
- 10. Microprocessor 8 bit multiplication and division.

TEXT BOOKS

- 1. B.Sc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd,

Publishers, 2006.

5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO ₁	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
	12	4		7	4	6	11	8
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

COURSE CODE	SUBJECT NAME	L	Т	Р	С
XPH605		0	0	3	2
	PHYSICS PRACTICAL –VI B	L	Т	P	Н
		0	0	3	3
COURSE OI	ITCOMES.				

COURSE OUTCOMES:

CO1: Cog: Ana; Aff: Rec.; Psy: Mech; Use laboratory techniques such as accuracy of measurements and data analysis.

- CO2: Cog: U; Aff: Rec.; Psy: Set, GR; *Explain theconcepts* that are learnt in the lecture sessions and *follow* hands-on learning experience in the laboratory sessions.
- CO3: Cog: R; Aff: Rec.; Psy: Mech; Gain knowledge in the scientific methods and identify the process of **measuring** different Physical variables
- CO4: Cog: Ap; Aff: Rec, Org; Psy: Mech; Manipulate and complete all the experiments with excellent *application* knowledge

LIST OF EXPERIMENTS

- JK-Flip Flop. 1.
- 2. Decade counter 7490.
- 3. Wien's bridge oscillator.
- FET Amplifier Band width. 4.
- 5. Feedback Amplifier - Transistor.

- 6. B.G. Comparison of mutual inductance.
- 7. Half Subtractor and Full Subtractor using NAND/NOR gates.
- 8. Microprocessor Decimal to Octal and Octal to Decimal Conversion.
- 9. Microprocessor Study of DAC Interfacing.
- 10. Microprocessor Decimal to Hexadecimal and Hexadecimal to Decimal Conversion.

TEXT BOOKS

- 1. BSc Practical Physics, C. L. Arora, (S. Chand)
- 2. An Advanced Course in Practical Physics, D. Chattopadhyay and P. C. Rakshit, (New Central Book Agency)
- 3. A Text Book of Advanced Practical Physics, S. Ghosh, (New Central Book Agency) 7 Semester 1 - Physics (Honours) Theory Paper.
- 4. Shukla R. K. and Anchal Srivastava, Practical Physics, New Age International (P) Ltd, Publishers, 2006.
- 5. Arora C. L., B.Sc Practical Physics, S. Chand and Company Ltd, 2007.

REFERENCES

- 1. Squires G. L., Practical Physics, 4 th Edition, Cambridge University Press, 2001.
- 2. Halliday D., Resnick R. and Walker J., Fundamentals of Physics, 6th Edition, John Wiley and Sons, 2001.
- 3. Jenkins F.A. and White H.E., Fundamentals of Optics, 4th Edition, Mc Graw Hill Book Company, 2007.
- 4. Geeta Sanon, B. Sc., Practical Physics, 1st Edition, S. Chand and Company, 2007.
- 5. Benenson, Walter, and Horst Stocker, Handbook of Physics, Springer, 2002.

COs	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	PO ₈
CO1	3	1		2	1	2	3	3
CO ₂	3	1		2	1	2	3	2
CO ₃	3	1		1	1	2	2	1
CO ₄	3	1		2	1	2	3	2
	12	4		7	4	6	11	8
Scaled to 1, 2, 3	3	1		2	1	2	3	2

Mapping with Programme Outcomes

3 – Strong: 2 – Medium: 1 – Low

Syllabus for M.Sc. Physics

YPH101 Core Course IMATHEMATICAL PHYSICS3 1 0 4

Course Objectives :

To familiarize the students with the mathematical techniques that will be useful in understanding theoretical treatment in different courses taught in this class and for developing a strong background if they want to pursue research in theoretical physics

Course Outcome:

At the end of the course students will be able to

- Master the basic elements of complex mathematical analysis
- Solve differential equations that are common in physical sciences
- Apply group theory and integral transforms to solve mathematical problems of interest in physics .

Unit I: VECTORS AND TENSORS

Vector analysis : Gradient –Divergence –Curl-second order derivatives – Gauss's theorem-Stoke's theorem-Green's theorem – Curvilinear coordinates spherical polar-cylindrical coordinates. Tensor analysis : Cartesian tensors – law of transformation of first and second order tensors- addition, subtraction and multiplication (inner and outer product) of tensors –rank ,covariant, contravariant and mixed tensors- symmetric and antisymmetric tensors- Quotient law.

Unit 2 : Complex Analysis

Functions of complex variables – Differentiability -- Cauchy-Riemann conditions – Complex integration – Cauchy's integral theorem and integral formula – Taylor's and Laurent's series – Residues and singularities - Cauchy's residue theorem – Evaluation of definite integrals

Unit 3: Differential equations and Special functions

Second order differential equations, Power Series method, Frobenius method, Bessel functions of first and second kind, Generating Function, Integral representation and recurrence relations and orthogonally, Legendre functions: Generating functions, recurrence relations and special properties, orthogonality, Associated Legendre functions: recurrence relations, parity and orthogonality, Hermite and Laguerre functions: Solution of Hermite and Lageurre differential equation, generating function and Recurrence relation.

Unit 4 FOURIER TRANSFORM, VECTOR SPACES AND GREEN FUNCTIONS

Fourier Transform: Fourier transform – sine and cosine transform – properties Faultung's theorem- application in heat conduction and spectroscopy. Vector spaces: Definition –Linear dependence-Linear independence of vectors- Linear spaces –Basis-change of basis – Inner product space – Schmidt's orthogonalisation procedure – Schwartz's inequality – Hilbert spaces

properties. Green's function: Definition and construction –symmetry propertiesexpression for Green's functions in terms of Eigen functions-Green's functions for simple and second order operator.

Unit 5 Group Theory

Basic definitions – Multiplication table – Subgroups, Cosets and Classes – Direct Product groups – Point groups -- Space groups – Representation theory – Homomorphism and isomorphism– Reducible and irreducible representations – Schur's lemma – The great Orthogonality theorem – Character table -- C3v and D3h as examples – Elementary ideas of rotation groups

Books for Study

- 1. A.W. Joshi, Matrices and Tensors in Physics, Wiley Eastern Ltd., New Delhi (1975)
- 2. P.K.Chattopadhyay, Mathematical Physics, Wiley Eastern Ltd., New Delhi (1990)
- 3. L.A.Pipes and L.R. Harvill, Applied Matematics for Engineers and Physcists, McGraw Hill Company, Signgapore (1967)
- 4. Mathematical Physics, B.D.Gupta, Vikas Publishing House, 2007

Books for Reference

- 1. Eugene Butkov, Mathematical Physics, Addison Wesley, London (1973)
- 2. A.K. Ghattak, T.C.Goyal and S.J. Chua, Mathematical Physics, Macmillan, New Delhi (1995)
- 3. G.Arfken and H.J.Mathemattical Methods for Physicists, 4th ed. M.D.Greenberg, Advanced Engineering Mathematics, 2nd ed. International ed.,Prentice Hall International, NJ, (1998)
- 4. E.Kreyszig, Advanced Engineering Mathematics, 8th ed. Wiley, NY (1999)

YPH102 Core Course IICLASSICAL DYNAMICS & RELATIVITY3 1 0 4

Course Objectives

To equip the students with the knowledge of Lagrangian and Hamiltonian principles, equations, canonicaltransformations and small oscillations, so that students may apply these equations and principles inmodern physics research

Course outcome :

At the end of the course students will be able to

- Know the difference between Newtonian mechanics and Analytic mechanics
- Solve the mechanics problems using Lagrangian formalism, a different method from Newtonian mechanics
- Understand the connection between classical mechanics and quantum mechanics from Hamiltonian formalism

Unit I : Fundamental Principles and Lagrangian Formulation

Mechanics of a particle and system of particles – Conservation laws – Constraints – Generalized coordinates – D' Alembert's principle and Lagrange's equation – Hamilton's principle – Lagrange's equation of motion and its applications – conservation theorems and symmetry properties – Motion under central force General features – The viral theorem – the Kepler problem Scattering in a central force field.

Unit 2: Laguangian Formulation: Applications

a) Rigid Body Dynamies

Euler angles – Moments and products of inertia – Euler's equations – Symmetrical top.

b) Oscillatory Motion

Theory of small oscillations – Normal modes and frequencies – Two coupled harmonic oscillators – Linear triatomic molecule Wave motion – wave equation – Phase velocity – Group Velocity dispersion.

Unit 3 : Hamilton's Formulation

Hamilton's canonical equations of motion – Hamilton's equations from variational principle – Principle of least action – Canonical transformations – Poisson brackets – Hamilton – Jacobi method – Action and angle variables – Kepler's problem in action – angle variables.

Unit 4 : Nonlinear Dynamics

Regular and Chaotic Motions: Linear and nonlinear oscillators, phase trajectories – fixed points and limit cycles – period doubling phenomenon and onset of chaos in logistic map and Duffing oscillator – Non linear components – MLC oscillators and its dynamics - Soliton and solitary waves - Linear and nonlinear waves – KdV equation – Numerical experiments of Kruskal and Zabusky – Solitons

Unit 5 : Relativity

Reviews of basic ideas of special relativity – Energy momentum four vector – Minkowski's four dimensional space – Lorentz transformation as rotation in Minkowski's space – Compositions of L.T. about two orthogonal directions – Thomas precession – Invariance of Maxwell's equations under Lorentz transformation – Elements of general theory of relativity.

Books for study

- 1. H.Goldstein, Classical Mechanics, Narosa Book distributors, New Delhi (1980)
- 2. M.Lakshmanan and S.Rajasekar: Nonlinear Dynamics: Integrability, Chaos and Patterns, Springer Verlag, Berlin (2003), Springer (India) 2004
- 3. M.Lakshmanan and K.Murali: Chaos in Nonlinear Oscillators, world Scientific Co., Singapore (1996). Chapters 2-4
- 4. Classical Mechanics, R.Bhatia, Narosa Publications.

Books for Reference

Publications Modern Physics, Beiser, Addison – Wesley series in physics

YPH103 Core Course III

BASIC ELECTRONICS

3 1 0 4

Course Objectives:

- To understand the basic working of Semiconducting devices and Linear Integrated Circuits.
- To give an emphasis to the student to know the various semiconductor devices and its working.
- To give clear understanding of various fabrication techniques of semiconducting devices.
- To introduce the basic building blocks of linear integrated circuits.

Course Outcome:

At the end of this course, students will be able to

- Understand the fundamentals of Semiconductor Device Physics
- Know the physical principles crucial to the functionality and operation of basic semiconductor devices.
- Enrich their knowledge in understanding the linear and non-linear applications of operational amplifiers.

UNIT – 1 SEMICONDUCTOR DIODES

The continuity equation – Application of the continuity equation for an abrupt PN junction under forward and reverse bias – Einstein equation – Varactor diode – Schottky diode – Tunnel diode – Gunn diode – Optoelectronic diodes – LASER diode, LED and photo diode.

UNIT – 2 TRANSISTORS AND POWER SEMI-CONDUCTOR DEVICES

JFET: structure and working -I - V characteristics under different conditions - biasing circuits - CS amplifier design - MOSFET: Depletion and Enhancement type MOSFET - UJT characteristics - relaxation oscillator.

SCR characteristics – application in power control DIAC, TRIAC, BJT, and IGBT, Turn-on and turn-off characteristics, switching losses.

UNIT – 3 OPERATIONAL AMPLIFIER

Operational amplifier characteristics – inverting and non-inverting amplifier – instrumentation amplifier – voltage follower –integrating and differential circuits – log & antilog amplifiers – opamp as comparator – Voltage to current and current to voltage conversions-active filters : lowpass, high pass, band pass & band rejection filters-Solving simultaneous and differential equations (Analog computations).

UNIT – 4 OP-AMP APPLICATIONS (OSCILLATORS AND CONVERTORS)

Wien Bridge, phase shift oscillators and twin-T oscillators – triangular, saw-tooth and square wave generators-Schmitt's trigger – sample and hold circuits – Voltage control oscillator – phase

locked loops. Basic D to A conversion: weighted resistor DAC - Binary R-2R ladder DAC - Basic A to D conversion: counter type ADC - successive approximation converter - dual slope ADC.

UNIT – 5 IC FABRICATIONS AND IC TIMER

Basic monolithic ICs – eqitaxial growth – masking –etching impurity diffusion fabricating monolithic resistors, diodes, transistors and capacitors – circuit layout – contacts and inter connections – charge coupled device – applications of CCDs.555 timer – description of the functional diagram – mono stable operation – applications of mono shots – astable operation-pulse generation.

Books for study

- 1. J.Milman and C.C. Halkias, Integrated Electronics, McGraw Hill (1972)
- 2. A. Mottershed, Semiconductor Devices and Applications, New Age Int Pub,
- 3. Milman and Taub, Pulse, digital and switching waveforms, McGraw Hill (1965)
- 4. Ben.G.Streetman, Solid state electronic devices, Printice Hall, Englewood cliffs, NJ (1999)
- 5. R.A.Gayakwad, Op-Amps&Linear integrated circuits, Printice Hall India Pvt Ltd.(1999)

Books for Reference

- 1. T.F.Schubert and E.M.Kim, "Active and Nonlinear Electronics", John Wiley Sons, New York (1996)
- 2. L.Floyd, Electronic Devices, "Pearson Education" New York (2004)
- 3. Dennis Le Crissitte, Transitors, Printice Hall India Pvt. Ltd (1963)
- 4. M.Goodge, Semiconductor Device Technology Mc Millan (1983)
- 5. S.M.Sze, Physices of Semiconductor Devices, Wiley-Eastern Ltd (1981)

YPH104 Core Course IV BASIC PRACTICAL (General & Electronics) – Lab 0 0 6 3

<u>General Lab</u>

Course Objectives:

- To make the student familiarize with the basics of experimental physics .
- To enable the student to explore the concepts involved in the thermodynamics and heat
- To make the student understand the basic concepts in modern optics
- To allow the student to understand the fundamentals of instruments involved

Course Outcome:

- At the end of the course,
- The student should have had a knowledge on the different experimental techniques.
- The student should have understood the basics of physics involved in experiments
- The student should be able to apply the concepts of physics and do the interpretation and acquire the result.

Any fifteen Experiments (Choosing a minimum of six experiments from each part)

A. General Experiments

- 1. Determination of Young's modulus, rigidity modulus and Poisson ratio by forming elliptical fringes
- 2. Determination of Young's modulus, rigidity modulus and Poisson ratio by forming hyperbolic fringes
- 3. Determination of bulk modulus of a liquid by ultrasonic wave propagation
- 4. Determination of Stefan's constant
- 5. Identification and determination of wavelengths of prominent lines using Hartmann's formula by spectrum photography Copper arc spectrum
- 6. Identification and determination of wavelengths of prominent lines using Hartmann's formula by spectrum photography Iron arc spectrum
- 7. BH loop Energy loss of a magnetic material Anchor ring using B.G.
- 8. Determination of dielectric constant at high frequency by Lecher wire
- 9. Determination of e/m of an electron by magnetron method
- 10. Determination of e/m of an electron by Thomson's method
- 11. Determination of L of a coil by Anderson's method
- 12. Photoelectric effect (Planck's constant Determination)

B. Electronics Lab

Course Objectives:

- To make the student familiarize with the basics of electronics .
- To enable the student to explore the concepts involved in the oscillators
- To make the student understand the basic concepts in Ic"s and digital devices
- To allow the student to understand the fundamentals of multivibrators

Course Outcome:

At the end of the course,

- The student should have had a knowledge on the different experimental techniques involved in electronics.
- The student should be able to independently construct the circiuts
- The student should be able to apply the concepts of electronics and do the interpretation and acquire the result.
- 13. Study of a feedback amplifier Determination of bandwidth, bandwidth and gain product constancy , input and output impedances.
- 14. Transistor power amplifier
- 15. Darlington pair amplifier
- 16. Design and study of monostable multivibrator
- 17. Design and study of bistable multivibrator
- 18. Design and study of Wein bridge Oscillator (Op-amp)
- 19. Design and study of phase shift Oscillator (Op-amp)
- 20. Characteristics of JFET
- 21. Characteristics of UJT

- 22. Characteristics of SCR
- 23. Characteristics of LDR
- 24 Common source amplifier using FET
- 25 Common drain amplifier using FET
- 26 Relaxation oscillator using UJT (or) Op-amp
- 27. Active 2nd order filter circuits
- 28. Construction of an Instrumentation amplifier

YPH201 Core Course V STATISTICAL MECHANICS

3 1 0 4

Course Objectives:

- The course is to understand the basics of Thermodynamics and Statistical systems.
- Understand the various laws of thermodynamics
- Acquire the knowledge of various statistical distributions.
- To comprehend the concepts of Enthalpy, phase transitions and thermodynamic functions.

Course Outcome:

At the end of this course, students will be able to

- Basic knowledge of thermodynamic systems
- Understand the basic idea about statistical distrbutions
- Impart the knowledge about the phase transitions and potentials
- Understand the applications of statistical laws

Unit 1 : Thermodynamics

Laws of thermodynamics – Zeroth law - Energy and First law – Entropy and second law – Nernest theorem and Third law - Calculation of entropy changes in reversible processes – The principle of increase of entropy – Thermodynamic variables potentials – Enthalpy, Helmholtz and the Gibbs functions – Maxwell thermodynamic relations (4) - Gibbs Phase rule – Chemical potential – Phase transitions – The Clausius-Clapeyron equation – van der Waals equation of state.

Unit 2 : Kinetic Theory

Distribution function and its evolution -- Boltzmann transport equation and its validity – Boltzmann's H-theorem – Maxwell-Boltzmann distribution – Transport phenomena – Mean free path – Conservation laws – Hydrodynamics (no derivation).

Unit 3 : Classical Statistical Mechanics

Review of probability theory – Macro-and micro states – Statistical equilibrium – Phase space and ensembles – Density function – Liouville's theorem – Maxwell- Boltzmann distribution law – Micro canonical ensemble – Ideal gas – Entropy – Partition function – Principle of equipartition

of energy – Canonical and grand canonical ensembles.

Unit 4 : Quantum Statistical Mechanics

Basic concepts – Quantum ideal gas – Bose-Einstein and Fermi-Dirac distribution laws – Sackur-Tetrode equation – Equations of state – Virial co-efficient - Bose-Einstein condensation.

Unit 5 : Applications of Q.S.M.

Ideal Bose gas : Photons – Black body and Planck radiation – Photons – Specific heat of solids – Liquid Helium. Ideal Fermi gas : Properties – Degeneracy – Electron gas – Pauli paramagnetism. Ferromagnetism : Ising (one dimensional model) and Heisenberg models.

Books for Study

- 1. B. K. Agarwal and M. Eisner, Statistical Mechanics (Wiley Eastern Limited, New Delhi, 1994).
- 2. F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw Hill, Singapore, 1985).

Book for Reference

- 1. K. Huang, Statistical Mechanics (Wiley Eastern Limited, New Delhi, 1963).
- 2. N. Sears and L. Salinger, Thermodynamics (Narosa, New Delhi, 1989).
- 3. W. Greiner, L. Neise and H. Stocker, Thermodynamics and Statistical Mechnaics (Springer, New York, 1995).

YPH202 Core Course VI :QUANTUM MECHANICS

3 1 0 4

Unit 1: Schrödinger Equation and General Formulation

Schrödinger Equation – Physical meaning and conditions on the wave function – Expectation values and Ehrenfest's theorem – Hermitian operators and their properties – Commutator relations – Uncertainty principle with proof - Bra and ket vectors - Hilbert space – Schrödinger, Heisenberg and interaction pictures.

Unit 2: Exactly Solvable Systems

Linear harmonic oscillator -- Solving the one dimensional Schrödinger equation - Abstract operator method – Particle in a box – Square well potential - Rectangular barrier potential – Eigen function and Eigen values - Rigid rotator – Hydrogen atom.

Unit 3: Approximation Methods

Time independent perturbation theory: Non-degenerate and degenerate perturbation theories --Stark effect – WKB Approximation -- Application to tunneling problem and quantization rules.Time dependent perturbation theory: Harmonic Perturbation – Transition probability.

Unit 4 : Scattering Theory and Angular Momentum

Scattering theory: Scattering cross section – Green's function approach – Born Approximation – Partial wave analysis. Angular momentum: Matrix Representation of J -- Spin angular momentum --Eigenvalues -- Addition of angular momenta -- Clebsch-Gordan coefficients($J_1 = J_2 = 1/2$)

Unit 5: Relativistic Quantum Mechanics

Klein-Gordon equation for a free particle and in an electromagnetic field – Dirac equation for a free particle -- Charge and current densities -- Dirac matrices – Plane wave solution – Negative energy states – Zitterbewegung – Spin angular momentum – Spin-orbit coupling.

Books for Study

- 1. P. M. Mathews and K. Venkatesan, A Text Book of Quantum Mechanics (Tata McGraw Hill, New Delhi, 1987).
- 2. A. Goswami, Quantum Mechanics (W. C. Brown, Dubuque, 1992).
- 3. Quantum Mechanics, Kakani & Chandiliya.
- 4. Quantum Physics, Srivatsa.

Book for Reference

- 1. L. Schiff, Quantum Mechanics (Tata McGraw Hill, New Delhi, 1968).
- 2. V. K. Thankappan, Quantum Mechanics (Wiley-Eastern, New Delhi, 1985).
- 3. J. Singh, Quantum Mechanics: Fundamentals and Applications to Technology (John-Wiley, New York, 1997).

YPH203 Core Course VII : ELECTROMAGNETIC THEORY

3 1 0 4

Course Objectives:

- To make the student understand the basic concepts in Electromagnetism
- To allow the student to have a deep knowledge of the fundamentals of Electromagnetism

Course Outcomes:

At the end of the course:

- The student should have understood the basics of electromagnetism
- The student should be able to apply the concepts of Electrodynamics

Unit 1 : Introduction to Electrostatics

Coulomb's law – Electric field – Gauss Law – Scalar potential – Surface distribution of charges and dipoles – Poisson and Laplace Equations – Green's theorem – Dirichlet and Neumann boundary conditions – Electrostatic boundary value problems : Solution using Green's function – Method of Images – Illustrations : Point charge in the presence of (i) a grounded conducting sphere, (ii) a charged, insulated and conducting sphere, (iii) near a conducting sphere at fixed potential and (iv) conducting sphere in a uniform electric field – Green's function for the sphere **Unit 2 : Electrostatics of Macroscopic Media** Multipole expansion – Elementary treatment of electrostatics with ponderable media – Boundary value problems with dielectrics -- Illustrations : (i) a point charge embedded at a distance away from a dielectric interface, (ii) dielectric sphere in a uniform electric field and (iii) spherical cavity in a dielectric medium with applied electric field – Molecular polarizability and electric susceptibility – Electrostatic energy in dielectric media.

Unit 3 : Magnetostatics

Biot and Savart law – Force between current carrying conductors – Differential equations of magnetostatics and Ampere's law – Vector potential – Magnetic field of a localized current distribution, magnetic moment – Force and torque and energy of a localized current distribution in an external magnetic induction - Macroscopic equations – Boundary conditions on B and H -- Methods of solving boundary value problems in magnetostatics – Uniformly magnetized sphere.

Unit 4 : Electromagnetics

Faraday's law of induction – Maxwell's displacement current – Maxwell equations - Maxwell equations in terms of vector and scalar potentials – Gauge transformations – Lorentz gauge, Coulomb gauge – Poynting's theorem – Conservation of energy and momentum for a system of charged particles and electromagnetic fields.

Unit 5 : Plane Electromagnetic Waves and Wave Propagation

Plane waves in a nonconducting medium – Linear and circular polarization, Stokes parameters – Reflection and refraction of electromagnetic waves at a plane interface between dielectrics – Fields at the surface of and within a conductor – Propagation of electromagnetic waves in hollow metallic cylinders : Cylindrical and rectangular wave guides -- TM and TE modes – Wave propagation in optical fibers

Books for Study

- 1. J. D. Jackson, Classical Electrodynamics (Wiley Eastern Ltd., New Delhi, 1999).
- 2. D. Griffiths, Introduction to Electrodynamics (Prentice-Hall, New Delhi, 1999).

Book for Reference

1. R. P. Feynman et al, The Feynman Lectures on Physics, Vol.II (Narosa, New Delhi, 1989).

YPH204 Core Course VIII : ADVANCED GENERAL EXPERIMENTS – LAB 0 0 6 3

(Any Twelve)

1. Forbe's method of determining thermal conductivity using thermocouples

2. Determination of carrier concentration and Hall coefficients in semiconductors.

3. Determination of magnetic susceptibility of liquid by Guoy method.

4. Determination of magnetic susceptibility of liquids by Quincke's method.

5. Determination of dielectric constant of a liquid by RF oscillator method.

6. Determination of wavelength and thickness of a film by using Michelson's interferometer.

7. Brass spectrum – Determination of composition.

8. Salt analysis by using Spectrograph.

9. ALO band spectrum.

10. Charge of an electron by spectrometer.

11. Polarizability of liquids by finding the refractive indices at different wavelengths.

12. Determination of wavelength of monochromatic source using biprism.

13. Determination of refractive index of liquids using biprism (by scale & telescope method).

14. Determination of specific rotatory power of a liquid using polarimeter.

15. Rydberg's constant using spectrometer.

16. Determination of coefficient of coupling by AC bridge method.

17. Four probe method – Determination of resistivities of powdered samples.

18. Determination of dielectric loss using CRO.

21. Particle size determination using He-Ne Laser.

22. Optical fibre - Diode Laser wave length and particle size and numerical aperture of an Optical fibre

YPH301 Core Course IX : SOLID STATE PHYSICS

3 1 0 4

COURSE OBJECTIVES:

• To understand the basic concepts in Solid state Physics.

• To have comprehensive idea on properties of materials.

COURSE OUTCOMES:

At the end of the course, the students will be able to understand the

• Basic concepts on properties of materials in solid state physics.

• Phenomenon of superconductivity and its properties.

• Different techniques used for synthesis and fabrication of nanomaterials.

Unit 1: Crystal Structure

Crystal classes and symmetry – 2D, 3D lattices – Bravais lattices – Symmetry point groups – Space groups – Reciprocal lattice – Ewald's sphere construction – Bragg's law – Systematic absences – Atomic scattering factor – Diffraction – Structure factor – Experimental techniques – Laue, Powder, Rotation methods – Phase problem – Electron density distribution (elementary ideas only).

Unit 2: Lattice Vibrations and Thermal Properties

Vibration of monoatomic lattices – Lattices with two atoms per primitive cell – Quantization of lattice vibrations – Phonon momentum – Inelastic scattering of neutrons by phonons -- Lattice heat capacity – Einstein model – Density of modes in one-dimension and three-dimension – Debye model of the lattice heat capacity – Thermal conductivity – Umklapp process.

Unit 3: Free Electron Theory, Energy Bands and Semiconductor Crystals

Energy levels and density of orbitals – Fermi-Dirac distribution – Free electron gas in threedimensions – Heat capacity of the electron gas – Electrical conductivity and Ohm's law – Motion in magnetic fields – Hall effect – Thermal conductivity of metals – Nearly free electron model – Electron in a periodic potential – Semiconductors – Band gap – Effective mass – Intrinsic carrier concentration.

Unit 4: Diamagnetism, Paramagnetism, Ferro magnetism and Antiferromagnetism

Langevin classical theory of Diamagnetism and paramagnetism – Weiss theory - Quantum theory of paramagnetism – Demagnetization of a paramagnetic salt – Paramagnetic susceptibility of conduction electrons - Hund's rules – Kondo effect -- Ferroelectric order – Curie point and the exchange integral – Temperature dependence of saturation magnetization – Magnons – Ferromagnetic order – Antiferromagnetic order –Ferromagnetic domains – Origin of domains – Coercive force and hysteresis – Phase transistion- order disorder phenomena – Type I, Type – II curie temperature.

Unit 5: Dielectrics and Ferroelectrics and Superconductivity

Macroscopic electric field – Local electric field at an atom – Dielectric constant and polarizability – Clausius-Mossotti equation – Polarizaion catastrophe – Ferroelectric domains -- Occurrence of

Superconductivity – Meissner effect – Thermodynamics of superconducting transition – London equation – Coherence length – BCS theory – Flux quantization – Type I and Type II Superconductors – Josephson superconductor tunneling – DC and AC Josephson effect – SQUID – Recent developments in high Temperature Superconductivity – Application of superconductors.

Books for Study

- 1. C. Kittel, Introduction to Solid State Physics (Wiley Eastern, New Delhi, 1977).
- 2. A. J. Dekker, Solid State Physics (McMillan, Madras, 1971).
- 3. S. O. Pillai, Solid State Physics (New Age International, New Delhi, 1995).
- 4. Introduction to Solid state Physics, Ali omar.

Book for Reference

- 1. N. W. Ashcrof and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, Philadelphia).
- 2. J. S. Blakemore, Solid State Physics (Cambridge University Press, Cambridge, 1974).
- 3. M. M. Woolfson, An Introduction to X-ray Crystallography (Cambridge University Press, Cambridge, 1991).

YPH302 Core Course X :	SPECIAL ELECTRONICS	3 1 0 4

COUSRE OBJECTIVES:

• To understand the concepts of microprocessors and microcontrollers

Course OUTCOMES:

At the end of the course, the students will be able to understand

• the working of digital electronic devices.

• the concepts of working model of microprocessors and microcontrollers

Unit 1 : Microcontroller Architecture

Introduction to Microcontroller – 8031 Microcontroller family (8031, 8032, 8052, 8051) – Organization of 8051 Microcontroller – Register structure – Special function registrars – Input / Output pins – Ports – Configurations – Programmed memory, Date memory – Counters and timers – serial data input, outputs – addressing modes.

Unit 2 : Instruction and programming

Assembly language programming for 8031/51 – Microcontroller family – Data transfer instruction – Arithmetic instruction – Branch instruction – Bit manipulation – instructions – rotate instructions – Instruction for stack operations – Programmes – multiplications – division – Greatest, smallest number in an array – ascending and descending order – evaluating simple expression of string manipulations – Pattern comparison – delay, routines – calculation time delay.

Unit 3 : I / O Interfaces

Data transfer schemes – Parallel data transfer – programmed data transfer, interrupt driven data transfer – DMA data transfer – serial data transfer – Interfacing devices – 8255 I/O ports

programming -8251 serial communication interface -8253 timer interface -6845 CRT controller -8357 – DMA controller.

Unit 4 : Antennas and Microwaves

Antennas: Thin linear antenna – Non-resonant antenna – Loop antenna – Radiation fields – Polarization – Isotopic radiator – Power gain – Effective parameters of an antenna – Dipole arrayed antenna – VHF, UHF and microwave antennas. Microwave generation and application: Klystron – Magnetron – Travelling wave tubes – Microwave propagation through wave guides – Attenuators – Crystal detection – Measurement of SWR – Transmitters and receivers.

Unit 5 : Colour Television

Essentials of colour television – Perception – Three colour theory – Luminescence – Hueand saturation – TV camera – Image orthicon – VIDICON – Luminescence signal – TV display tubes: CRT, LED, LCD and Plasma display. Modulation of colour difference signals – PAL of colour TV systems – PAL, NTSC, SECAM colour TV systems – PAL colour receiver – Block diagram – Merits and demerits.

Books for Study

- 1. The 8031 Microcontroller Architecture Programming and applications, Kenneth J.Ayla Penram International Space Publishing (India), second edition.
- 2. Microprocessor and interfacing Programming and hardware, DOUGLASV.HALL
- 3. Introduction to microprocessor, Aditya P.Mathur/ Guonka.
- 4. Atwatts, Introduction to Microwave theory (McGraw Hill Ltd, Singapore, 1980).
- 5. R. R. Gulati, Monochrome and Colour Television (Wiley Eastern, New Delhi, 1995).

YPH303 Core Course XINUCLEAR AND PARTICLE PHYSICS3 1 0 4

Course Objectives

- To study the general properties of nucleus
- To study the nuclear forces and nuclear reactions.
- To introduce the concept of elementary particles

Course Outcomes

At the end of the course, the students can able to

- Acquire basic knowledge about nuclear and particle physics
- Develop the nuclear reactions and neutron physics.
- Understand the nuclear fission and fusion reactions.
- Impart the knowledge about the nuclear forces and elementary particles

Unit 1 : Basic Nuclear Properties

Nuclear size, shape, mass – Charge distribution – Spin and parity – Binding energy – Semi

empirical mass formula – Nuclear stability – Mass parabola -- Nature of nuclear forces – Ground state of deuteron – Magnetic dipole moment of deuteron – Proton-neutron scattering at low energies – Scattering length, phase shift – Properties of nuclear forces – Spin dependence – Charge symmetry – Charge independence – Repulsion at short distances – Exchange forces – Meson theory.

Unit 2 : Radioactive Decays

Alpha emission – Geiger-Nuttal law – Gamow theory – Neutrino hypothesis – Fermi theory of beta decay – Selection rules – Nonconservation of parity – Gamma emission – Selection rules – Transition probability – Internal conversion – Nuclear isomerism – Interaction of charged particles and X-rays with matter – Basic principles of particle detectors – Ionization chamber – Proportional counter and G.M counters – Solid state detectors – Scintillation and semiconductor detectors.

Unit 3 : Nuclear Reactions and Nuclear Models

Q-values and kinematics of nuclear cross sections – Energy and angular dependence – Reciprocity theorem – Breit-Wigner formula – Compound nucleus – Resonance theory – Optical model – Shell model – Liquid drop model – Collective model.

Unit 4 : Accelerators and Reactors

Cyclotron – Synchrocyclotron – Betaron – Synchrotron – Linear accelerators -- Characteristics of fission – Mass distribution of fragments – Radioactive decay processes – Fission cross section – Energy in fission – Bohr-Wheeler's theory of nuclear fission – Fission reactors – Thermal reactors – Homogeneous reactors – Heterogeneous reactors – Basic fusion processes - Characteristics of fusion – Solar fusion – Controlled fusion reactors.

Unit 5 : Elementary Particles

Building blocks of nucleus – Nucleons, leptons, mesons, baryons, hyperons, hadrons, strange particles - Classification of fundamental forces and elementary particles – Basic Conservation laws – Additional Conservation laws : Baryonic, leptonic, strangeness and isospin charges/quantum numbers – Gell-Mann- Nishijima formula – Multiplets - Invariance under time reversal (T) charge conjugation (C) and parity (P) – TCP theorem -- Parity nonconservation in weak interactions – CP violation – Eight-fold way and supermultiples – SU(3) symmetry and quark model.

Books for Study

- 1. K. S. Krane, Introductory Nuclear Physics (John-Wiley, New York, 1987).
- 2. S. B. Patel, Nuclear Physics: An Introduction (Wiley-Eastern, New Delhi, 1991).
- 3. B. L. Cohen, Concepts of Nuclear Physics (Tata McGraw Hill, New Delhi, 1988).
- 4. H. S. Hans, Nuclear Physics: Experimental and Theoretical (New AgeInternational Publishers, New Delhi, 2001).
- 5. D. C. Cheng and G. K. O'Neill, Elementary Particle Physics: An Introduction (Addison-Wesley, 1979).
- 6. D. Griffiths, Introduction to Elementary Particles (Wiley International, New York, 1987).

YPH304 Core Course XII: ADVANCED ELECTRONICS LAB

0 0 6 3

A. Digital Electronics and ICs (Choosing a minimum of six experiments)

- 1) Half and Full wave precision rectifier using IC 741
- 2) Astable and bistable and monostable multivibrator using IC 555
- 3) Digital to analog converter R-2R method and Weighted method
- 4) Study the function of multiplexer and demultiplexer
- 5) Study the function of decoder and encoder
- 6) Flip flops (RS, JK, Master & slave)
- 7) Half adder and Full adder, Half subtractor and Full Subtractor (using only NAND & NOR gates)
- 8) BCD to seven segment display
- 9) Study of counter using IC 7490 (0-9 and 00-99)

B. Microcontroller Practicals

(Choosing a minimum of five experiments)

- 1. Microcontroller addition, subtraction (8 Bit)
- 2. Microcontroller addition, subtraction (Array)
- 3. Microcontroller Multiplication 8 bit by 8 bit and 16 bit by 8 bit
- 4. Microcontroller Division by 8 bit by 8 bit and 16 bit by 8 bit
- 5. Microcontroller To find the largest and smallest number in an array
- 6. Microcontroller Pattern comparison .
- 7. Microcontroller Ascending and descending order.
- 8. Microcontroller Wave form generation.
- 9. Study of 2×2 bit RAM.

C. Automation Lab

PLC Lab

(Choosing a minimum of two experiments)

- 1) Pump control
- 2) Selective bandwidth
- 3) Gate control system
- 4) Starter Control
- 5) Furnace control door

Sensorics

(Choosing a minimum of two experiments)

- 1) Behavior of inductive sensors NBN
- 2) Behavior of capacitive sensors CJ
- 3) Behavior of magnetic sensor MB

- 4) Behavior of through beam sensor
- 5) Response curve of capacitive sensor

YPH401 Core Course XIIISPECTROSCOPY3 1 0 4

Course Objectives:

- To make the student understand the principles of microwave spectroscopy
- To enable the student to explore the field of vibrational spectroscopy
- To make the student understand the basic concepts in nuclear spectroscopy
- To allow the student to understand the fundamentals of surface spectroscopy

Course Outcomes:

At the end of the course:

- The student should have had a knowledge on the techniques and instrumentation of microwave spectroscopy
- The student should have understood the basics of NMR and other spectroscopic techniques
- The student should be able to interpret spectra of the samples

Unit 1 : Atomic Spectra

Quantum states of electron in atoms – Hydrogen atom spectrum – Electron spin – Stern-Gerlach experiment – Spin-orbit interaction – Two electron systems – LS-JJ coupling schemes – Fine structure – Spectroscopic terms and selection rules – Hyperfine structure - Exchange symmetry of wave functions – Pauli's exclusion principle – Periodic table – Alkali type spectra – Equivalent electrons – Hund's rule.

Unit 2: Atoms in External Fields and Quantum Chemistry

Atoms in External Fields : Zeeman and Paschen-Back effect of one and two electron systems --Selection rules – Stark effect . Quantum Chemistry of Molecules : Covalent, ionic and van der Waals interactions – Born-Oppenheimer approximation – Heitler-London and molecular orbital theories of H2 – Bonding and anti-bonding MOs – Huckel's molecular approximation – Application to butadiene and benzene.

Unit 3: Microwave and IR Spectroscopy

Rotational spectra of diatomic molecules – Effect of isotopic substitution – The non-rigid rotor -Rotational spectra of polyatomic molecules – Linear, symmetric top and asymmetric top molecules – Experimental techniques -- Vibrating diatomic molecule – Diatomic vibrating rotator – Linear and symmetric top molecules – Analysis by infrared techniques – Characteristic and group frequencies

Unit 4: Raman Spectroscopy and Electronic Spectroscopy of Molecules

Raman spectroscopy : Raman effect -- Quantum theory of Raman effect -- Rotational and vibrational Raman shifts of diatomic molecules -- Selection rules. Electronic spectroscopy of

molecules : Electronic spectra of diatomic molecules - - The Franck-Condon principle – Dissociation energy and dissociation products – Rotational fine structure of electronic vibration transitions

Unit 5: Resonance Spectroscopy

NMR: Basic principles – Classical and quantum mechanical description – Bloch equations – Spin-spin and spin-lattice relaxation times – Chemical shift and coupling constant -- Experimental methods – Single coil and double coil methods – High resolution methods. ESR: Basic principles – ESR spectrometer – nuclear interaction and hyperfine structure – relaxation effects – g-factor – Characteristics – Free radical studies and biological applications.

Books for Study

1. C. N. Banwell, Fundamentals of Molecular Spectroscopy (McGraw Hill, New York, 1981).

Book for Reference

- 1. B. P. Straughan and S. Walker, Spectroscopy Vol.I. (Chapman and Hall, New York, 1976).
- 2. R. P. Feynman et al. The Feynman Lectures on Physics Vol. III. (Narosa, New Delhi, 1989).
- 3. H. S. Mani and G. K. Mehta, Introduction to Modern Physics (Affiliated East West, New Delhi, 1991).
- 4. A. K. Chandra, Introductory Quantum Chemistry (Tata McGraw Hill, New Delhi, 1989).
- 5. Pople, Schneiduer and Berstein, High Resolution NMR (McGraw Hill, New York).
- 6. Manas Chanda, Atomic Stucture and Chemical Bond (Tata McGraw Hill, New Delhi, 1991).
- 7. Ira N. Levine, Quantum Chemistry (Prentice-Hall, New Delhi, 1994).
- 8. Arthur Beiser, Concepts of Modern Physics (McGraw Hill, New York, 1995).
- 9. C.P. Slitcher, Principles of Magnetic Resonance (Harper and Row).

YPH403 Core Course XV :

High Energy Physics

3 1 0 4

UNIT-I : Nuclear Interactions

Nuclear forces - Two body problem - Ground state of deuteron - Magnetic moment - Quadruple moment - Tensor forces - Meson theory of nuclear forces - Yukawa potential - Nucleon-nucleon scattering - Low energy n-p scattering - Effective range theory - Spin dependence, charge independence and charge symmetry of nuclear forces - Isospin formalism.

UNIT-II: Nuclear decay

Beta decay - Fermi's theory - Fermi-Kurie Plot - Fermi and Gamow - Teller selection rules -Allowed and forbidden decays - Decay rates - Theory of Neutrino - Helicity of neutrino - Helicity measurement - Theory of electron capture - Non-conservation of parity - Gamma decay - Internal conversion - Multipole transitions in nuclei - Nuclear isomerism - Angular correlation in successive gamma emissions.

UNIT – III : Particle interaction and fields

Classical and quantum pictures of interactions – Yukawa theory of quantum exchange – boson propagator – Feynman diagram – Basic ideas on the theories of weak, electroweak, strong, gravitational and electromagnetic interactions – interaction cross section – decays and resonances.

UNIT - IV : Particle Physics and Cosmology

Hubble's law and the expanding universe – Friedmann equation – cosmic microwave radiation: the hot Big Bang – Radiation and matter eras – Nucleosynthesis in the Big Bang – Baryon-antibaryon asymmetry – Dark mater – Inflation – Neutrino astronomy.

UNIT – V : Scattering of Elementary Particles

Scattering: Electron-muon, neutrino-electron, elastic lepton-nucleon, deep inelastic and partons, deep inelastic and quarks – experimental results on quarks distribution in the nucleon – sum rules.

Books for Study

P.H.Perkins, , 1982, Introduction to high energy Physics, Addison – Wesley, London.

- 1. K.S. Krane, 1987, Introductory Nuclear Physics, Wiley, New York.
- 2. D. Griffiths, 1987, Introduction to Elementary Particle Physics, Harper and Row, New York.
- 3. R.R. Roy and B.P. Nigam, 1983, Nuclear Physics, New Age International, New Delhi.
- 4. I. Kaplan, 1989, Nuclear Physics, 2nd Edition, Narosa, New Delhi.
- 5. H.A. Enge, 1975, Introduction to Nuclear Physics, Addison Wesle, London.

Books for Reference

1. Y.R. Waghmare, 1981, Introductory Nuclear Physics, Oxford-IBH, New Delhi.

- 2. Ghoshal, Atomic and Nuclear Physics, Volume 2.
- 3. J.M. Longo, 1971, Elementary Particles, McGraw-Hill, New York.
- 4. R.D. Evans, 1955, Atomic Nucleus, McGraw-Hill, New York.
- 5. B.L. Cohen, 1971, Concepts of Nuclear Physics, TMH, New Delhi.
- 6. M.K. Pal, 1982, Theory of Nuclear Structure, Affl. East-West, Chennai.
- 7. W.E. Burcham and M. Jobes, 1995, Nuclear and Particle Physics, Addison-Wesley, Tokyo.

YPH105A Elective Course – INUMERICAL METHODS IN PHYSICS3003

Course Objectives:

- To understand the basic Numerical methods and programming.
- To have an idea to apply numerical methods into research areas

Course Outcome:

At the end of the course, the students will be able to apply the basic concepts of numerical methods in relevant fields.

Unit I

Errors and the measurements General formula for errors – Errors of observation and measurement – Empirical formula – Graphical method – Method of averages – Least square fitting – curve fitting – parabola, exponential.

Unit II

Numerical solution of algebraic and transcendental equations The iteration method – The method of false position – Newton – Raphson method – Convergence and rate of convergence – C program for finding roots using Newton – Raphson method. Simultaneous linear algebraic equations Gauss elimination method – Jordon's modification – Gauss – Seidel method of iteration.

Unit III

Interpolation Linear interpolation – Lagrange interpolation Gregory – Newton forward and backward interpolation formula – Central difference interpolation formula – Gauss forward and backward interpolation formula – Divided differences – Properties – Newton's interpolation formula for unequal intervals.

Unit IV

Numerical differentiation and integration Newton's forward and backward difference formula to compute derivatives – Numerical integration: the trapezoidal rule, Simpson's rule – Extended Simpson's rule.

Unit V

Numerical Solutions of ordinary differential equations Nth order ordinary differential equations – Power series approximation – Pointwise method – Solutions of Taylor series – Euler's method – Improved Euler's method – Runge-Kutta method – second and third order – Runge-Kutta method for solving first order differential equations.

Books for study

- 1. Introductory Methods of Numerical analysis S.S. Sastry, Prentice Hall of India, New Delhi (2003) 3rd Edition.
- 2. Numerical methods for Physicists M. K. Venkatraman.

Books for Reference

1. Numerical Methods in Science and Engineering – The National Publishing Co.Madras (2001).

- 2.Numerical Recipes in C, W.H.Press, B.P.Flannery, S.A.Teukolsky, W.T.Vetterling, Cambridge University (1996).
- 3. Monte Carlo : Basics, K.P.N. Murthy, ISRP, Kalpakkam, 2000.

YPH105B Elective Course – IIG

GEOPHYSICS

UNIT I Introductions

Concept of fields: scalar, vector and rastar, conservation laws; mass, momentum, energy and charge, Constitutive relations and dynamical equations, elastic, viscous, electromagnetic and thermal.

UNIT II Electrical & Electromagnetic Prospecting

Electrical properties of rocks – Current flow in a homogenous media – Electrode arrays - Current flow across layers of differing resistivities- Principles of electromagnetic- Electromagentic waves in lossy dielectric materials -Snell's law – Reflection/transmission coefficients – Common midpoint (CMP) reflection measurements – Field methods – Vertical Electrical Sounding (VES).

UNIT III Gravity and Magnetic prospecting

Basic equations and Earth's gravity field - Measurement of gravity: Absolute gravity and Relative gravity – Basic equations and units of magnetic field – Gravity prospecting instruments: Stable and unstable gravimeters, borehole and airborne gravimeters- Applications of gravity and magnetic prospecting in oil/gas, minerals and groundwater exploration.

UNIT IV Seismic Prospecting Methods

Propagation of Seismic Waves in Linear and Nonlinear medium, Waveforms and their characteristics - Seismic data enhancement and Test Shooting, Explosive and Non Explosive sources of Seismic Energy for P-Wave, Seismic source energy For S-Wave.- Mapping of Geological Structures (Faults, Reef, Pinchouts, Anticlines) - Applications of seismic methods in Hydrocarbon, Mining, Groundwater and Engineering studies. Mapping of Geological structures.

UNIT V Geo physical application in Disaster management

Introduction to seismology, Earthquakes and Plate Tectonics – Richter – Merchlle scale – Seismograph - Seismogram - Faulting and fracture, secondary effects of earthquakes: landslides, tsunami, fires and fatalities.

Books for study

Outlines of Geophysical Prospecting - A manual for geologists, by Ramachandra Rao, M.B., Prasaranga, University of Mysore, Mysore, 1975.
YPH105C Elective Course–III Thin film Science and characterization Techniques 3 0 0 3

Course Objectives:

- To teach the fundamentals of the scientific principles behind thin-film technology.
- To give an emphasis to the student to know the various characterization techniques of thin films.
- To give clear understanding of various fabrication techniques of thin films.
- To know the proper use of equipment and experimentation procedures related to thin film fabrication.

Course Outcome:

At the end of this course, students will be able to

- Understand various techniques to grow thin films.
- Study the mechanical and electrical properties of thin films.
- Apply the concept of thin films in the fabrication of various electronic devices.

UNIT I: PREPARATION METHODS

Electrolytic deposition, cathodic and anodic films, thermal evaporation, cathodic sputtering, chemical vapour deposition. Molecular beam epitaxial and laser ablution methods.

UNIT II: THICKNESS MEASUREMENT AND MONITORING

Electrical, mechanical, optical interference, microbalance, quartz crystal methods.

Analytical techniques of characterization: X-ray diffraction, electron microscopy, high and low energy electron diffraction, Auger emission spectroscopy. Photoluminescence(PL) – Raman Spectroscopy, UV-Vis-IR Spectrophotometer – AFM – Hall effect – SIMS – X-ray Photoemission Spectroscopy (XPS) – Vibrational Sample Magnetometers, Rutherford Back Scattering (RBS).

UNIT III: THERMODYNAMICS AND KINETICS OF THIN FILM FORMATION

Film growth – five stages – Nucleation theories – Incorporation of defects and impurities in films – Deposition parameters and grain size – structure of thin films.

UNIT IV: MECHANICAL & ELECTRICAL PROPERTIES OF FILMS

Mechanical Properties: Elastic and plastic behavior – Optical properties – Reflectance and transmittance spectra – Absorbing films – Optical constants of film material – Multilayer films. Anisotropic and gyrotropic films.

Electric properties to films: Conductivity in metal, semiconductor and insulating films. Discontinuous films, Superconducting films, Dielectric properties.

UNIT V: APPLICATIONS

Micro and optoelectronic devices, quantum dots, Data storage, corrosion and wear coatings -

Polymer films, MEMS, optical applications –Applications in electronics–electric contacts, connections and resistors, capacitors and inductances – Applications of ferromagnetic and superconducting films – active electronic elements, micro acoustic elements using surface waves–integrated circuits–thin films in optoelectronics and integrated optics.

REFERENCES:

- 1. M.Ohring, "The Materials Science of Thin Films", Academic Press, 2nd edition(2001).
- 2. Zexian Cao, "Thin film growth Physics, materials science and applications", Woodhead .
- 3. Publishing Limited, (2011).
- 4. H.Bubert and H.Jenett, "Surface and Thin Film Analysis Principles, Instrumentations, Applications", Wiley VCH Verlag GmbH (2002).
- 5. Krishna Seshan, "Handbook of Thin-Film Deposition Processes and Techniques", Noyes Publications & William Andrew Publishing, 2nd edition(2002).

YPH201A Elective Course–IVLASER AND ITS APPLICATIONS3003

UNIT I :

Spontaneous emission, Stimulated emission, Populationinversion, Fabry Perot etalon, table two mirror optical resonators, Longitudinal and transverse modes of lasercavity, Mode selection, Gain in a regenerative laser cavity.

UNIT II :

Two level laser system, Threshold for three and four levellaser systems, Mode locking, Pulse shortening- pico secondand femto second operation, Spectral narrowing andstabilization, Gaussian beam and its properties

UNIT III

Ammonia maser, Nitrogen laser, Carbon dioxide laser, Excimerlaser, Dye laser, Ruby laser, Nd-YAG laser, Diode –pumpedsolid state lasers, Semiconductor lasers, High power lasersystems,.

UNIT IV :

Laser induced fluorescence, Raman scattering and itsapplications, Non-linear interaction of light with matter, Laserinduced multi-photon processes and their applications.

UNIT V :

Ultra high resolution spectroscopy with lasers and itsapplications, Propagation of light in a medium with variablerefractive index, Optical fibers, Light wave communication, Qualitative treatment of medical and engineeringapplications of lasers, Material processing.

Books for study

- 1. Introduction to laser physics, Koichi Shimoda
- 2. Introduction to laser physics, B A Lengyl
- 3. Lasers, Svelto
- 4. Optical electronics, Yariv
- 5. Laser spectroscopy, Demtroder

YPH205B Elective Course – V

Nano Science

Course Objectives:

The course is to understand the basic knowledge on nanomaterial characterization

- Understand the various process techniques available of nanostructure materials.
- Acquire the knowledge of various nano nanomaterial characterization
- To enhance the various analytical technique to understand the nano properties and characteristics of nano materials.

Course Outcome:

At the end of this course, students will be able to

- Basic knowledge of Nanoscience and nanotechnology characterization techniques
- Under the basic idea about the nano material and nano structure
- Impart the knowledge about the properties and characteristics techniques of nano materials Understand the applications of nanomaterials

Unit- I

Introduction to nanoscience and technology (Nature vs Nano) - Importance of nanomaterials – classification – Nanostructures – Types and properties - Optical, Electronic and Magnetic materials; Engineering challenges for Nanotechnology, Potential impaction devices and systems, examples- Basic physics of naonomaterials, quantum confinement, molecular assembly, surface alignment, size effects.

Unit – II

Useful techniques for nanoscience and technology – nanofabrication; lithography electron beam lithography, molecular beam epitaxy, chemical vapor deposition, electrochemical deposition, solution chemistry – structureal characterization ; SPM, XRD, AFM, TEM, SEM - Optical property characterization; UV–Vis, Fluorescene, Raman and IR – composition analysis; XPS and Auger Spectroscopy.

Unit – III

Techniques for nanoscience characterization and fabrication of nanoscale systems and devices – scanning probe microsacopy, nanotweezers electron microscopy, molecular manufacture, nano fabrication, nono lithography, focused ion beam, electron beam lithography, fullerences.

Unit – IV

Molecular Electronics; molecular wire, Molecular Diode, Transistor and switch – Characterization and performance.

Unit – V

Nanoscale in biology and biometric materials mineralized tissues, apatite crystals,

organic/inorganic matrix, precipitation, artificial bone, cell structure membranes actin, macro molecules bloadhesion, ligand – receptor interactions, collagen structure, bone morphogenic proteins, cell migration, cell attachments, phagocytasis, macrophage response.

Books for study

1. Charles P.Poole Jr. & Frank J.Owns. "Introduction to Nanotechnology" wiley,2003.

Books for Reference

- 1. M.Ratner.et al ., Nanotechnolgy; A Gentle introduction , Prentice- Hall, ISBN 0-13- 101400-5, 2003.
- 2. Nanotechnolgy; Basic science and Engineering Technologies, CRC Press.
- 3. A.S Edelstien and R.C. Coronmarata, Nanomaterials; systhesis, Properties and Applications, 2ed,IOP(U.K), 1996.

YPH205C Elective Course–VI NON–DESTRUCTIVE TESTING TECHNOLOGY3 0 0 3

Course objectives:

Non-destructive evaluation forms an important part of Quality assurance of the developed material in the industry. This course covers the non destructive methods of testing materials like

- Liquid penetrant testing
- Magnetic particle testing
- Eddy current testing
- X-ray and Gamma ray inspection
- Ultrasonic inspection

Course outcome:

At the completion of the course, students would have got familiarized with

- Visual testing and liquid penetration inspection of material
- Generation of magnetic field and magnetic particle testing of material
- Generation of Eddy currents and testing of material
- Radiographic inspection of material
- Generation of ultrasonics and inspection of material

UNIT I SURFACE NDE TECHNIQUES – I

Visual inspection – Basic principles – Microscope – Bore scope – Endoscope – flexible fibre – optic Borescope – Telescope – Holography – Applications.

Liquid Penetrant testing – Physical principles – Procedure for penetrant testing – penetrant testing materials – penetrant – cleaners and emulsifiers – developers –penetrant testing methods–

Applications & limitations.

UNIT II SURFACE NDE TECHNIQUES – II

Magnetic particle testing – Magnetism – Basic Definitions and principle of MPT- Magnetizing techniques –procedure used for testing a component – equipment used for MPT – sensitivity – Limitations.

Eddy current testing – Principles – instrumentation for ECT – high sensitivity techniques – inspection of heat exchanger tubes by single frequency ECT system – multi frequency ECT- high frequency ECT – Limitations.

UNIT III BASIC PRINCIPLES OF RADIOGRAPHY

Electromagnetic Radiation sources – X –ray source – Production of X-ray – High energy X-ray source – Gamma-ray sources – properties of X-ray and gamma ray – Radiation attenuation in the Specimen – Effect of radiation on Film — Radiographic imaging – Geometrical factors – Radiographic film – intensifying screen – Film density – radiographic sensitivity – penetrameter.

UNIT IV RADIOGRAPHY INSPECTION TECHNIQUES

Inspection techniques – Single wall single image technique – Double wall penetration technique – Application of radiographic inspection – limitations – real-time radiography – Safety in industrial radiography – radiation units – limits for radiation exposure – methods for exposure control – Radiation monitoring.

UNIT V ULTRASONIC TESTING

Properties of sound beam – sound waves – velocity of ultrasonic waves – Behavior of ultrasonic waves – Ultrasonic flow detection equipment – modes of display A-scan ,B- scan, C- scanimmersion testing- applications of ultrasonic testing – advantages – Limitations.

Books for Study

- 1. American Society of metals: "Non-Destructive Inspection and Quality Control"; Metals Hand Book, Vol.11, 8th Edition, Metal Park.
- 2. Krautkramer, Josef and Hebert Krautkramer. "Ultrasonic Testing of Meterials", 3rd Edition, Newyork, Springer verlag.

Books for Reference

1. Baldev Raj, T.Jayakumar and M.Thavasimuth. "Practical Non – Destructive Testing", 3rd Edition, Narosa Publishing House, 2008.

YPH305A Elective Course–VIICRYSTAL GROWTH AND CHARACTERIZATION
TECHNIQUES300

UNIT I NUCLEATION AND GROWTH

Nucleation – Different kinds of nucleation – Concept of formation of critical nucleus – Classical theory of nucleation – Spherical and cylindrical nucleus.

UNIT II SOLUTION GROWTH TECHNIQUE

Low temperature solution growth : Solution – Solubility and supersolubility – Expression of supersaturation - Miers T-C diagram – Constant temperature bath and crystallizer – Seed preparation and mounting – Slow cooling and solvent evaporation methods.

UNIT III GEL GROWTH TECHNIQUE

Principle – Various types – Structure of gel – Importance of gel – Experimental procedure – Chemical reaction method – Single and double diffusion method – Chemical reduction method – solubility reduction method – Complex and decomplexion method – Advantage of gel method.

UNIT IV MELT GROWTH TECHNIQUE

Bridgman technique – Basic process – Various crucibles design – Thermal consideration – Vertical Bridgman technique – Czochralski technique – Experimental arrangement – Growth process

UNIT V CHARACTERIZATION TECHNIQUE

X-Ray Diffraction (XRD) – Powder and single crystal – Fourier transform Infrared analysis (FT-IR) – Elemental analysis – Atomic absorption spectroscopy (AAS) – Elemental dispersive – X – ray analysis (EDAX) – Scanning Electron Microscopy (SEM) – UV-VIS spectrograph – Etching (Chemical) – Vickers Micro hardness.

Books for study

- 1. J.C. Brice, Crystal Growth Processes, John Wiley and Sons, New York (1986).
- 2. P.Santhana Ragavan and P.Ramasamy, Crystal Growth Processes and Methods, KRU Publications, Kumbakonam (2001).

 YPH305B Elective Course – VIII
 Automation Science and Techniques3
 0
 0
 3

OBJECTIVES:

Toknow the fundamental principles, design and operation of hydraulic and pneumatic machines, components and systems and their application in recent automation revolution.

TolearntheApplicationsofFluidPower SysteminautomationofMachineToolsand othersEquipments

UNITI FLUID POWER SYSTEMSAND FUNDAMENTALS (9)

Introductiontofluidpower,Advantages of fluidpower,Applicationof fluidpowersystem. Types offluidpowersystems,Properties ofhydraulic fluids–Generaltypesoffluids – Fluidpowersymbols.BasicsofHydraulics- ApplicationsofPascalsLaw-Laminar and Turbulent flow–Reynold'snumber–Darcy'sequation–Lossesinpipe,valvesand fittings.

UNITII HYDRAULIC SYSTEM&COMPONENTS

SourcesofHydraulic Power:Pumpingtheory–Pumpclassification–Gear pump,Vane Pump,piston pump,construction andworkingofpumps –pumpperformance–Variable displacementpumps.Fluid PowerActuators:Linearhydraulicactuators–Types of hydrauliccylinders–Singleacting,Double acting specialcylindersliketanden,Rodless, Telescopic,Cushioningmechanism,Construction ofdoubleacting cylinder,Rotary actuators–Fluidmotors,Gear,VaneandPistonmotors.

UNITIII DESIGNOFHYDRAULIC CIRCUITS

ConstructionofControlComponents:Directionalcontrolvalve–3/2wayvalve–4/2 wayvalve– Shuttlevalve–checkvalve– pressure pressure controlvalve–pressure reducing valve, sequence valve, Flow control valve–Fixed and adjustable, electrical control solenoid valves, Relays, ladder diagram. Accumulators and Intensifiers: Types of accumulators– Accumulators circuits, sizing of accumulators, intensifier–Applications of Intensifier – Intensifier circuit.

UNITIV PNEUMATIC SYSTEMSAND COMPONENTS

PneumaticComponents:Properties of air–Compressors–Filter,Regulator,LubricatorUnit– Aircontrolvalves, Quick exhaustvalves,pneumatic actuators.Fluid PowerCircuit Design, Speed control circuits, synchronizing circuit, Penumo hydraulic circuit, Sequential circuitdesignfor simpleapplicationsusingcascademethod.

UNITV DESIGNOFFLUIDIC CIRCUITS WITH SENSORS

Servosystems–HydroMechanicalservosystems,Electro hydraulicservosystemsand proportionalvalves.Fluidics–Introductionto fluidicdevices,simplecircuits,Introduction toElectroHydraulicPneumaticlogiccircuits,ladderdiagrams,PLCapplicationsin fluid powercontrol.Fluidpower circuits;failureandtroubleshooting.

TEXTBOOKS:

- 1. AnthonyEsposito, "FluidPower withApplications", PearsonEducation2005.
- 2. Majumdar S.R., "Oil Hydraulics Systems- Principles and Maintenance", TataMcGraw-Hill, 2001.

REFERENCES:

(9)

(9)

(9)

(9)

- 1. Srinivasan.R,"HydraulicandPneumaticcontrols", VijayNicole, 2006.
- 2. Shanmugasundaram.K,"HydraulicandPneumaticcontrols", Chand&Co, 2006.
- 3. MajumdarS.R., "Pneumaticsystems-Principlesandmaintenance", TataMcGrawHill, 1995
- 4. AnthonyLal,"Oil hydraulicsintheserviceofindustry", Alliedpublishers, 1982.
- 5. HarryL.StevartD.B, "Practicalguidetofluidpower", TaraoealasonsandPortLtd.Broadey, 1976.
- 7. Michael J, PrinchesandAshbyJ.G,"Power Hydraulics", PrenticeHall, 1989.
- 8. Dudelyt, A. Peaseand John T. Pippenger, "Basic Fluid Power", Prentice Hall, 1987.

YPH305C Elective Course – IXRESEARCH METHODOLOGY3 0 0 3

Course Objectives :

• The aim of this paper is to develop research skill in scholars and enable them to carry out research in the concerned branch of subject

Course Outcome:

- To give an advance exposure to the students about the research,
- To develop acquaintance with intensive techniques and skills of research process,
- To familiarize the art and style of writing a research report and
- To know the recent developments in research protection internationally.

UNIT I Introduction – Selection of Research Problem

Research: Objective, Motivation, innovation types, approaches and significance research methods versus methodology. Research process.

Defining research problem, necessity of defining the problem, selecting a problem, study on the societal benefits, social importance, impact on local and global issues.

UNIT II Literature Survey and Report writing

Methods of literature survey; library and Internet, search engines for literature survey, availability of literature and databases on the topic of research. Significance of report writing, steps in writing report, layout of research report, types of reports, oral presentation, mechanics of writing research report, precautions of writing research reports.

UNIT III – Data Analysis

Precision and accuracy – Determinate and random errors – Distribution of random errors – normal distribution curve – statistical treatment of finite samples-T – test and F-test-criteria for rejection of an observation – the Q-test – Significant figures and computation rules – Data plotting – least square analysis – significance of correlation coefficient.

UNIT IV – Computer Applications

Basics of internet services – various sources of abstracts, articles and papers – browsing and downloading – TOC Registration-online journals – e-books, courseware and technical reports – different file formats like DOC, PDS, PS, HTML – conversion of one file format to anther-use of MS Office suite- word, Excel, Power Point and Access for scientific and other applications –free and open source software (FOSS) and e-learning materials.

UNIT V – IPR and other issues

TRIPS-Indian WTO patent laws, patent cooperation treaty convention, patenting, patent and IPR related agencies in India and abroad. Format of (UGC, CSIR) research proposals funding agencies for research.

Reference:

- 1. C.R. Kothari, Research Methodology: Methods and Techniques, New Age, International Publisher (2005).
- 2. N. Gurumani, Research Methodology for Biological Science, MJP Publishers, Chennai (2006)
- 3. W.L. Cocharn, "Statistical Methods", Oxford and IBH Publication, New Delhi (1976)
- 4. K.V. Raman, Computer in Chemistry, Tata McGraw Hill, New Delhi (1993)
- 5. Anderson, Theses & Assignment writing, Prentice Hall (1998)